Ichimura, Humio; Nakajima, Shoichi A note on the relative class number of the cyclotomic \(\mathbb Z_p\)-extension of \(\mathbb Q(\sqrt{-p})\). (English) Zbl 1333.11103 Proc. Japan Acad., Ser. A 88, No. 1, 16-20 (2012). Summary: Let \(p\) be a prime number with \(p \equiv 3 \bmod 4\) and \(q=(p-1)/2\). Let \(k=\mathbb Q(\sqrt{-p})\) and \(k_{\infty}/k\) be the cyclotomic \(\mathbb Z_p\)-extension. Denote by \(h_n^{-}\) the relative class number of the \(n\)-th layer \(k_{n}\). Let \(\ell\) be a prime number with \(\ell \neq p\). We show that, for any \(n \geq 1, \ell\) does not divide \(h_n^{-}/h_{n-1}^{-}\) (resp. \(h_1^{-}/h_0^{-}\)) if \(\ell\) is a primitive root modulo \(p^2\) (resp. \(p\)) and \(\ell \geq q-2\) (resp. \(\ell \geq q-6\)). Further, we show with the help of computer that when \(p < 10000\) and \(n \leq 100\), \(\ell\) does not divide \(h_n^{-}/h_{n-1}^{-}\) (resp. \(h_1^{-}/h_0^{-}\)) for any prime \(\ell\) which is a primitive root modulo \(p^2\) (resp. \(p\)). Cited in 2 ReviewsCited in 4 Documents MSC: 11R29 Class numbers, class groups, discriminants 11R11 Quadratic extensions 11R18 Cyclotomic extensions Keywords:class number; quadratic field; cyclotomic extension; non-p part × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] P. E. Conner and J. Hurrelbrink, Class number parity , Series in Pure Mathematics, 8, World Sci. Publishing, Singapore, 1988. · Zbl 0743.11061 [2] M. Gut, Abschätzungen für die Klassenzahlen der quadratischen Körper, Acta Arith. 8 (1962/1963), 113-122. · Zbl 0116.02901 [3] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field, J. London Math. Soc. (2) 66 (2002), no. 2, 257-275. · Zbl 1011.11072 · doi:10.1112/S0024610702003502 [4] K. Horie, The ideal class group of the basic \(\mathbf{Z}_{p}\)-extension over an imaginary quadratic field, Tohoku Math. J. (2) 57 (2005), no. 3, 375-394. · Zbl 1128.11051 · doi:10.2748/tmj/1128703003 [5] Maplesoft. http://www.maplesoft.com/products/maple/index.aspx. [6] H. Ichimura and S. Nakajima, On the 2-part of the ideal class group of the cyclotomic \(\mathbf{Z}_{p}\)-extension over the rationals, Abh. Math. Semin. Univ. Hambg. 80 (2010), no. 2, 175-182. · Zbl 1222.11126 · doi:10.1007/s12188-010-0036-x [7] L. C. Washington, The non-\(p\)-part of the class number in a cyclotomic \(\mathbf{Z}_{p}\)-extension, Invent. Math. 49 (1978), no. 1, 87-97. · Zbl 0403.12007 · doi:10.1007/BF01399512 [8] L. C. Washington, Introduction to cyclotomic fields , 2nd ed., Graduate Texts in Mathematics, 83, Springer, New York, 1997. · Zbl 0966.11047 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.