×

Invariant Peano curves of expanding Thurston maps. (English) Zbl 1333.37043

Summary: We consider Thurston maps, i.e., branched covering maps \(f:S^2 \to S^2\) that are post-critically finite. In addition, we assume that \(f\) is expanding in a suitable sense. It is shown that each sufficiently high iterate \(F = f^n\) of \(f\) is semi-conjugate to \(z^d:S^1 \to S^1\), where \(d = \deg F\). More precisely, for such an \(F\) we construct a Peano curve \(\gamma:S^1 \to S^2\) (onto), such that \(F \circ \gamma(z) = \gamma(z^d)\) (for all \(z \in S^1\)).

MSC:

37F20 Combinatorics and topology in relation with holomorphic dynamical systems
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
57M12 Low-dimensional topology of special (e.g., branched) coverings
57M50 General geometric structures on low-dimensional manifolds
28A80 Fractals

References:

[1] Agol, I., Criteria for virtual fibering. J. Topol., 1 (2008), 269–284. · Zbl 1148.57023 · doi:10.1112/jtopol/jtn003
[2] Bonk, M. & Meyer, D., Expanding Thurston maps. Preprint, 2012. arXiv:1009.3647 [math.DS]. · Zbl 1430.37001
[3] Buser, P., Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, 106. Birkhäuser, Boston, MA, 1992. · Zbl 0770.53001
[4] Cannon, J.W., Floyd, W. J. & Parry, W. R., Finite subdivision rules. Conform. Geom. Dyn., 5 (2001), 153–196. · Zbl 1060.20037 · doi:10.1090/S1088-4173-01-00055-8
[5] – Expansion complexes for finite subdivision rules. I. Conform. Geom. Dyn., 10 (2006), 63–99. · Zbl 1092.52502 · doi:10.1090/S1088-4173-06-00126-3
[6] – Constructing subdivision rules from rational maps. Conform. Geom. Dyn., 11 (2007), 128–136. · Zbl 1138.37023 · doi:10.1090/S1088-4173-07-00167-1
[7] Cannon, J. W. & Thurston, W. P., Group invariant Peano curves. Geom. Topol., 11 (2007), 1315–1355. · Zbl 1136.57009 · doi:10.2140/gt.2007.11.1315
[8] Daverman, R. J., Decompositions of Manifolds. Pure and Applied Mathematics, 124. Academic Press, Orlando, FL, 1986. · Zbl 0608.57002
[9] Douady, A., Systèmes dynamiques holomorphes, in Bourbaki Seminar, Vol. 1982/83, Astérisque, 105, pp. 39–63. Soc. Math. France, Paris, 1983. · Zbl 0532.30019
[10] Douady, A. & Hubbard, J. H., Étude dynamique des polynômes complexes. Partie I. Publications Mathématiques d’Orsay, 84. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. · Zbl 0552.30018
[11] – Étude dynamique des polynômes complexes. Partie II. Publications Mathématiques d’Orsay, 85. Université de Paris-Sud, Département de Mathématiques, Orsay, 1985.
[12] – A proof of Thurston’s topological characterization of rational functions. Acta Math., 171 (1993), 263–297. · Zbl 0806.30027 · doi:10.1007/BF02392534
[13] Gabai, D., On 3-manifolds finitely covered by surface bundles, in Low-Dimensional Topology and Kleinian Groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., 112, pp. 145–155. Cambridge University Press, Cambridge, 1986.
[14] Ghys, É. & de la Harpe, P. (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics, 83. Birkhäuser, Boston, MA, 1990. · Zbl 0731.20025
[15] Gromov, M., Hyperbolic groups, in Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, pp. 75–263. Springer, New York, 1987. · Zbl 0634.20015
[16] Haïssinsky, P. & Pilgrim, K. M., Coarse expanding conformal dynamics. Astérisque, 325 (2009). · Zbl 1206.37002
[17] Horn, R. A. & Johnson, C. R., Matrix Analysis. Cambridge University Press, Cambridge, 1990. · Zbl 0704.15002
[18] Kameyama, A., On Julia sets of postcritically finite branched coverings. II. S 1-parametrization of Julia sets. J. Math. Soc. Japan, 55 (2003), 455–468. · Zbl 1162.37319 · doi:10.2969/jmsj/1191419126
[19] Keller, K., Invariant Factors, Julia Equivalences and the (Abstract) Mandelbrot Set. Lecture Notes in Mathematics, 1732. Springer, Berlin–Heidelberg, 2000. · Zbl 0970.37032
[20] Kreweras, G., Sur les partitions non croisées d’un cycle. Discrete Math., 1 (1972), 333–350. · Zbl 0231.05014 · doi:10.1016/0012-365X(72)90041-6
[21] Lattès, S., Sur l’itération des substitutions rationnelles et les fonctions de Poincaré. C. R. Acad. Sci. Paris, 166 (1918), 26–28. · JFM 46.0522.01
[22] Le Gall, J.-F., The topological structure of scaling limits of large planar maps. Invent. Math., 169 (2007), 621–670. · Zbl 1132.60013 · doi:10.1007/s00222-007-0059-9
[23] Le Gall, J.-F. & Paulin, F., Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal., 18 (2008), 893–918. · Zbl 1166.60006 · doi:10.1007/s00039-008-0671-x
[24] McMullen, C. T., Complex Dynamics and Renormalization. Annals of Mathematics Studies, 135. Princeton University Press, Princeton, NJ, 1994. · Zbl 0807.30013
[25] – Local connectivity, Kleinian groups and geodesics on the blowup of the torus. Invent. Math., 146 (2001), 35–91. · Zbl 1061.37025 · doi:10.1007/PL00005809
[26] Meyer, D., Expanding Thurston maps as quotients. Preprint, 2009. arXiv:0910.2003 [math.CV].
[27] – Unmating of rational maps, sufficient criteria and examples. To appear in Frontiers in Complex Dynamics (Banff, AB, 2011), Princeton Univ. Press, Princeton, NJ. arXiv:1110.6784 [math.CV].
[28] Milnor, J., Pasting together Julia sets: a worked out example of mating. Experiment. Math., 13 (2004), 55–92. · Zbl 1115.37051 · doi:10.1080/10586458.2004.10504523
[29] – Dynamics in One Complex Variable. Annals of Mathematics Studies, 160. Princeton University Press, Princeton, NJ, 2006. · Zbl 1085.30002
[30] – On Lattès maps, in Dynamics on the Riemann Sphere, pp. 9–43. Eur. Math. Soc., Zürich, 2006. · Zbl 1235.37015
[31] Minsky, Y. N., On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds. J. Amer. Math. Soc., 7 (1994), 539–588. · Zbl 0808.30027
[32] Moise, E. E., Geometric Topology in Dimensions 2 and 3. Graduate Texts in Mathematics, 47. Springer, New York, 1977. · Zbl 0349.57001
[33] Otal, J.-P., The Hyperbolization Theorem for Fibered 3-Manifolds. SMF/AMS Texts and Monographs, 7. Amer. Math. Soc., Providence, RI, 2001.
[34] Rees, M., Positive measure sets of ergodic rational maps. Ann. Sci. École Norm. Sup., 19 (1986), 383–407. · Zbl 0611.58038
[35] – A partial description of parameter space of rational maps of degree two. I. Acta Math., 168 (1992), 11–87. · Zbl 0774.58035 · doi:10.1007/BF02392976
[36] Shishikura, M., On a theorem of M. Rees for matings of polynomials, in The Mandelbrot Set, Theme and Variations, London Math. Soc. Lecture Note Ser., 274, pp. 289–305. Cambridge University Press, Cambridge, 2000. · Zbl 1062.37039
[37] Simion, R., Noncrossing partitions. Discrete Math., 217 (2000), 367–409. · Zbl 0959.05009 · doi:10.1016/S0012-365X(99)00273-3
[38] Sullivan, D., Quasiconformal homeomorphisms and dynamics. II. Structural stability implies hyperbolicity for Kleinian groups. Acta Math., 155 (1985), 243–260. · Zbl 0606.30044 · doi:10.1007/BF02392543
[39] Tan, L., Matings of quadratic polynomials. Ergodic Theory Dynam. Systems, 12 (1992), 589–620. · Zbl 0756.58024
[40] Thurston, W. P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc., 6 (1982), 357–381. · Zbl 0496.57005 · doi:10.1090/S0273-0979-1982-15003-0
[41] – On the combinatorics of iterated rational maps. Preprint, 1985.
[42] – On the geometry and dynamics of iterated rational maps, in Complex Dynamics, pp. 3–137. Peters, Wellesley, MA, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.