Shakkah, Ghada; Al-Salman, Ahmad A class of parabolic maximal functions. (English) Zbl 1333.42039 Commun. Math. Anal. 19, No. 2, 1-31 (2016). Summary: In this paper, we prove \(L^{p}\) estimates of a class of parabolic maximal functions provided that their kernels are in \(L^{q}\). Using the obtained estimates, we prove the boundedness of the maximal functions under very weak conditions on the kernel. In particular, we prove the\(\;L^{p}\)-boundedness of our maximal functions when their kernels are in \(L\log L^{\frac{1}{2}}(\mathbb{S}^{n-1})\) or in the block space \(B_{q}^{0,-1/2}(\mathbb{S}^{n-1}),\) \(q>1\). Cited in 2 Documents MSC: 42B25 Maximal functions, Littlewood-Paley theory 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B35 Function spaces arising in harmonic analysis Keywords:parabolic maximal functions; oscillatory integrals; singular integrals; block space PDF BibTeX XML Cite \textit{G. Shakkah} and \textit{A. Al-Salman}, Commun. Math. Anal. 19, No. 2, 1--31 (2016; Zbl 1333.42039) Full Text: Euclid OpenURL