×

Topological properties of path connected components in spaces of weighted composition operators into \(L^{1}\). (English) Zbl 1333.47021

The paper studies weighted composition operators from \(L^\infty,H^\infty\), and the disk algebra into \(L^\infty\). It is shown that the topological structures for the connected components of such operators are all the same in the three cases.
Reviewer: Kehe Zhu (Albany)

MSC:

47B33 Linear composition operators
47B38 Linear operators on function spaces (general)
30H10 Hardy spaces
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] R. Aron, P. Galindo and M. Lindström, Connected components in the space of composition operators in \(H^{\infty}\) functions of many variables , Int. Equat. Oper. Th. 45 (2003), 1-14. · Zbl 1029.46053
[2] E. Berkson, Composition operators isolated in the uniform operator topology , Proc. Amer. Math. Soc. 81 (1981), 230-232. · Zbl 0464.30027
[3] J. Bonet, M. Lindström and E. Wolf, Topological structure of the set of weighted composition operators on weighted Bergman spaces of infinite order , Int. Equat. Oper. Th. 65 (2009), 195-210. · Zbl 1193.47030
[4] P.S. Bourdon, Components of linear-fractional composition operators , J. Math. Anal. Appl. 279 (2003), 228-245. · Zbl 1043.47021
[5] J.S. Choa, K.J. Izuchi and S. Ohno, Composition operators on the space of bounded harmonic functions , Int. Equat. Oper. Th. 61 (2008), 167-186. · Zbl 1155.47027
[6] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic functions , CRC Press, Boca Raton, 1995. · Zbl 0873.47017
[7] E.A. Gallardo-Gutiérrez, M.J. González, P J. Nieminen and E. Saksman, On the connected component of compact composition operators on the Hardy space , Adv. Math. 219 (2008), 986-1001. · Zbl 1187.47021
[8] T.W. Gamelin, Uniform algebras , Prentice Hall, New Jersey, 1969. · Zbl 0213.40401
[9] K. Hoffman, Banach spaces of analytic functions , Prentice Hall, New Jersey, 1962. · Zbl 0117.34001
[10] T. Hosokawa, K.J. Izuchi and S. Ohno, Topological structure of the space of weighted composition operators on \(H^{\infty}\) , Int. Equat. Oper. Th. 53 (2005), 509-526. · Zbl 1098.47025
[11] T. Hosokawa, K.J. Izuchi and D. Zheng, Isolated points and essential components of composition operators on \(H^{\infty}\) , Proc. Amer. Math. Soc. 130 (2002), 1765-1773. · Zbl 1008.47031
[12] K.J. Izuchi, Y. Izuchi and S. Ohno, Weighted composition operators on the space of bounded harmonic functions , Int. Equat. Oper. Th. 71 (2011), 91-111. · Zbl 1241.47023
[13] —-, Path connected components in weighted composition operators on \(h^\infty\) and \(H^\infty\) with the operator norm , Trans. Amer. Math. Soc. 365 (2013), 3593-3612. · Zbl 1282.47048
[14] —-, Path connected components in weighted composition operators on \(h^\infty\) and \(H^\infty\) with the essential operator norm , Houston J. Math. 40 (2014), 161-187. · Zbl 1303.47045
[15] —-, Boundary vs. interior conditions associated with weighted composition operators , Cent. Eur. J. Math. 12 (2014), 761-777. · Zbl 1307.47033
[16] B.D. MacCluer, Components in the space of composition operators , Int. Equat. Oper. Th. 12 (1989), 725-738. · Zbl 0685.47027
[17] B. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on \(H^{\infty}\) , Int. Equat. Oper. Th. 40 (2001), 481-494. · Zbl 1062.47511
[18] J.S. Manhas, Topological structures of the spaces of composition operators on spaces of analytic functions , Contemp. Math. 435 (2007), 283-299. · Zbl 1144.47020
[19] J. Moorhouse and C. Toews, Differences of composition operators , Contemp. Math. 321 (2003), 207-213. · Zbl 1052.47018
[20] P.J. Nieminen and E. Saksman, On compactness of the difference of composition operators , J. Math. Anal. Appl. 298 (2004), 501-522. · Zbl 1072.47021
[21] J. Ryff, Subordinate \(H^p\) functions , Duke Math. J. 33 (1966), 347-354. · Zbl 0148.30205
[22] D. Sarason, Composition operators as integral operators , Analysis and partial differential equations , Lect. Notes Pure Appl. Math. 122 , Marcel Dekker, New York, 1990. · Zbl 0712.47026
[23] J.H. Shapiro, Composition operators and classical function theory , Springer-Verlag, New York, 1993. · Zbl 0791.30033
[24] J.H. Shapiro and C. Sundberg, Isolation amongst the composition operators , Pac. J. Math. 145 (1990), 117-152. · Zbl 0732.30027
[25] —-, Compact composition operators on \(L^1\) , Proc. Amer. Math. Soc. 108 (1990), 443-449. · Zbl 0704.47018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.