×

zbMATH — the first resource for mathematics

Central limit theorem for moments of spectral measures of Wigner matrices. (English) Zbl 1333.60028
Summary: Spectral measures of Wigner matrices are investigated. The Wigner semicircle law for spectral measures is proved. Regarding this as the law of large numbers, the central limit theorem for moments of spectral measures is also derived. The proof is based on the moment method and a combinatorial method.
MSC:
60F05 Central limit and other weak theorems
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
PDF BibTeX XML Cite
Full Text: Euclid arXiv
References:
[1] G.W. Anderson and O. Zeitouni: A CLT for a band matrix model , Probab. Theory Related Fields 134 (2006), 283-338. · Zbl 1084.60014 · doi:10.1007/s00440-004-0422-3 · arxiv:math/0412040
[2] G.W. Anderson, A. Guionnet and O. Zeitouni: An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics 118 , Cambridge Univ. Press, Cambridge, 2010. · Zbl 1184.15023
[3] A. Lytova and L. Pastur: Fluctuations of matrix elements of regular functions of Gaussian random matrices , J. Stat. Phys. 134 (2009), 147-159. · Zbl 1161.60007 · doi:10.1007/s10955-008-9665-1
[4] S. O’Rourke, D. Renfrew and A. Soshnikov: On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries , J. Theoret. Probab. 26 (2013), 750-780. · Zbl 1280.15021 · doi:10.1007/s10959-011-0396-x · arxiv:1104.1663
[5] A. Pizzo, D. Renfrew and A. Soshnikov: Fluctuations of matrix entries of regular functions of Wigner matrices , arXiv: · Zbl 1246.60014 · doi:10.1007/s10955-011-0404-7 · arxiv:1103.1170
[6] Ya. Sinai and A. Soshnikov: Central limit theorem for traces of large random symmetric matrices with independent matrix elements , Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), 1-24. · Zbl 0912.15027 · doi:10.1007/BF01245866
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.