Deformed Neumann model from spinning strings on \({\mathrm{AdS}}_5\times\mathrm{S}^5_{\eta}\). (English) Zbl 1333.81303

Summary: We show that bosonic spinning strings on the \(\eta\)-deformed \({\mathrm{AdS}}_5\times\mathrm{S}^5\) background are naturally described as periodic solutions of a novel finite-dimensional integrable system which can be viewed as a deformation of the celebrated Neumann model. For this deformed model we find the Lax representation and the analogue of the Uhlenbeck integrals.


81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv


[1] Maldacena, JM, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113, (1999)
[2] Frolov, S.; Tseytlin, AA, Semiclassical quantization of rotating superstring in ads_{5} × S\^{}{5}, JHEP, 06, 007, (2002)
[3] Frolov, S.; Tseytlin, AA, Multispin string solutions in ads_{5} × S\^{}{5}, Nucl. Phys., B 668, 77, (2003)
[4] Arutyunov, G.; Frolov, S.; Russo, J.; Tseytlin, AA, Spinning strings in ads_{5} × S\^{}{5} and integrable systems, Nucl. Phys., B 671, 3, (2003)
[5] Arutyunov, G.; Russo, J.; Tseytlin, AA, Spinning strings in ads_{5} × S\^{}{5}: new integrable system relations, Phys. Rev., D 69, 086009, (2004)
[6] Plefka, J., Spinning strings and integrable spin chains in the AdS/CFT correspondence, Living Rev. Rel., 8, 9, (2005)
[7] Arutyunov, G.; Frolov, S., Foundations of the ads_{5} × S\^{}{5} superstring. part I, J. Phys., A 42, 254003, (2009)
[8] Arutyunov, G.; Staudacher, M., Matching higher conserved charges for strings and spins, JHEP, 03, 004, (2004)
[9] Kazakov, VA; Marshakov, A.; Minahan, JA; Zarembo, K., Classical/quantum integrability in AdS/CFT, JHEP, 05, 024, (2004)
[10] Arutyunov, G.; Frolov, S.; Staudacher, M., Bethe ansatz for quantum strings, JHEP, 10, 016, (2004)
[11] Neumann, C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur (in Latin), J. Reine Angew. Math., 56, 46, (1859)
[12] Uhlenbeck, K., Equivariant harmonic maps into spheres, Lect. Notes Math., 949, 146, (1982)
[13] O. Babelon, D. Bernard and M. Talon, Introduction to classical integrable systems, Cambridge University Press, Cambridge U.K. (2003), pg. 23.
[14] Delduc, F.; Magro, M.; Vicedo, B., An integrable deformation of the ads_{5} × S\^{}{5} superstring action, Phys. Rev. Lett., 112, 051601, (2014)
[15] I.V. Cherednik, Relativistically invariant quasiclassical limits of integrable two-dimensional quantum models, Theor. Math. Phys.47 (1981) 422 [Teor. Mat. Fiz.47 (1981) 225] [INSPIRE].
[16] Klimčík, C., Yang-Baxter σ-models and ds/AdS T duality, JHEP, 12, 051, (2002)
[17] Klimčík, C., On integrability of the Yang-Baxter σ-model, J. Math. Phys., 50, 043508, (2009)
[18] Beisert, N.; Koroteev, P., Quantum deformations of the one-dimensional Hubbard model, J. Phys., A 41, 255204, (2008)
[19] Delduc, F.; Magro, M.; Vicedo, B., On classical q-deformations of integrable σ-models, JHEP, 11, 192, (2013)
[20] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., The classical origin of quantum affine algebra in squashed σ-models, JHEP, 04, 115, (2012)
[21] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., On the classical equivalence of monodromy matrices in squashed σ-model, JHEP, 06, 082, (2012)
[22] Sfetsos, K., Integrable interpolations: from exact CFTs to non-abelian T-duals, Nucl. Phys., B 880, 225, (2014)
[23] T.J. Hollowood and J.L. Miramontes, Symplectic deformations of integrable field theories and AdS/CFT, arXiv:1403.1899 [INSPIRE].
[24] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., Jordanian deformations of the ads_{5} × S\^{}{5} superstring, JHEP, 04, 153, (2014)
[25] Kawaguchi, I.; Matsumoto, T.; Yoshida, K., A Jordanian deformation of AdS space in type IIB supergravity, JHEP, 06, 146, (2014)
[26] Matsumoto, T.; Yoshida, K., Lunin-Maldacena backgrounds from the classical Yang-Baxter equation — towards the gravity/CYBE correspondence, JHEP, 06, 135, (2014)
[27] Matsumoto, T.; Yoshida, K., Integrability of classical strings dual for noncommutative gauge theories, JHEP, 06, 163, (2014)
[28] Kameyama, T.; Yoshida, K., Anisotropic Landau-Lifshitz σ-models from q-deformed ads_{5} × S\^{}{5} superstrings, JHEP, 08, 110, (2014)
[29] P.M. Crichigno, T. Matsumoto and K. Yoshida, Deformations of T\^{}{1,1}as Yang-Baxter σ-models, arXiv:1406.2249 [INSPIRE].
[30] Arutyunov, G.; Borsato, R.; Frolov, S., S-matrix for strings on η-deformed ads_{5} × S\^{}{5}, JHEP, 04, 002, (2014)
[31] Hoare, B.; Hollowood, TJ; Miramontes, JL, Q-deformation of the ads_{5} × S\^{}{5} superstring S-matrix and its relativistic limit, JHEP, 03, 015, (2012)
[32] Arutyunov, G.; Leeuw, M.; Tongeren, SJ, The quantum deformed mirror TBA I, JHEP, 10, 090, (2012)
[33] Arutyunov, G.; Leeuw, M.; Tongeren, SJ, The quantum deformed mirror TBA II, JHEP, 02, 012, (2013)
[34] S.J. van Tongeren, Integrability of the AdS_{5} × S\^{}{5}superstring and its deformations, arXiv:1310.4854 [INSPIRE].
[35] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, On the exact spectrum and mirror duality of the (AdS_{5} × S\^{}{5})_{\(η\)}superstring, arXiv:1403.6104 [INSPIRE].
[36] G. Arutyunov and S.J. van Tongeren, The AdS_{5} × S\^{}{5}mirror model as a string, arXiv:1406.2304 [INSPIRE].
[37] Avan, J.; Talon, M., Alternative Lax structures for the classical and quantum Neumann model, Phys. Lett., B 268, 209, (1991)
[38] Avan, J.; Talon, M., Poisson structure and integrability of the Neumann-Moser-Uhlenbeck model, Int. J. Mod. Phys., A 5, 4477, (1990)
[39] J. Moser, Various aspects of integrable Hamiltonian systems, C.I.M.E. Summer Schools78 (2011) 137.
[40] Kruczenski, M.; Russo, J.; Tseytlin, AA, Spiky strings and giant magnons on S\^{}{5}, JHEP, 10, 002, (2006)
[41] Khouchen, M.; Kluson, J., Giant magnon on deformed ads_{3} × S\^{}{3}, Phys. Rev., D 90, 066001, (2014)
[42] C. Ahn and P. Bozhilov, Finite-size giant magnons on η-deformed AdS_{5} × S\^{}{5}, arXiv:1406.0628 [INSPIRE].
[43] Frolov, SA; Roiban, R.; Tseytlin, AA, Gauge-string duality for (non)supersymmetric deformations of N =4 super Yang-Mills theory, Nucl. Phys., B 731, 1, (2005)
[44] E. Rosochatius, Über Bewegungen eines Punktes (in German), inaugural dissertation, Univ. Gottingen, Gebr. Unger, Germany (1877).
[45] Borisov, AV; Kilin, AA; Mamaev, IS, Multiparticle systems. the algebra of integrals and integrable cases, Regul. Chaotic Dyn., 14, 18, (2009)
[46] A.V. Borisov and I.S. Mamaev, Modern methods of the theory of integrable systems (in Russian), Izhevsk: Institute of Computer Science, Moscow Russia (2003).
[47] Khesin, B.; Lenells, J.; Misiolek, G.; Preston, SC, Geometry of diffeomorphism groups, complete integrability and geometric statistics, Geom. Funct. Anal., 23, 334, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.