×

zbMATH — the first resource for mathematics

Convex optimization and parsimony of \(L_p\)-balls representation. (English) Zbl 1333.90089
MSC:
90C22 Semidefinite programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. B. Ash, Real Analysis and Probability, Academic Press, Boston, 1972. · Zbl 1381.28001
[2] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, Optimization with sparsity-inducing penalties, Found. Trends Mach. Learn., 4 (2012), pp. 1–106. · Zbl 06064248
[3] A. Beck and Y. C. Eldar, Sparsity constrained nonlinear optimization: Optimality conditions and algorithms, SIAM J. Optim., 23 (2013), pp. 1480–1509. · Zbl 1295.90051
[4] E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489–509. · Zbl 1231.94017
[5] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306. · Zbl 1288.94016
[6] D. L. Donoho and M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via \(ℓ^1\) minimization, Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 2197–2202. · Zbl 1064.94011
[7] E. Freitag and R. Busam, Complex Analysis, 2nd ed., Springer-Verlag, Berlin, 2009. · Zbl 1167.30001
[8] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, 2nd ed., Chelsea, New York, 1952. · Zbl 0047.38806
[9] J. B. Lasserre, A quick proof for the volume of \(n\)-balls, Amer. Math. Monthly, 108 (2001), pp. 768–769. · Zbl 1054.26503
[10] J. B. Lasserre, A generalization of Löwner-John’s ellipsoid theorem, Math. Program., 152 (2015), pp. 559–591. · Zbl 1337.90049
[11] J. B. Lasserre and T. Netzer, SOS approximations of nonnegative polynomials via simple high degree perturbations, Math. Z., 256 (2007), pp. 99–112. · Zbl 1122.13005
[12] J. B. Lasserre and E. S. Zeron, Solving a class of multivariable integration problems via Laplace techniques, Appl. Math. (Warsaw), 28 (2001), pp. 391–405. · Zbl 1008.65016
[13] A. Morozov and Sh. Shakirov, Introduction to integral discriminants, J. High Energy Phys., 12 (2009), 002.
[14] A. Yu. Morozov and Sh. R. Shakirov, New and old results in resultant theory, Theoret. and Math. Phys., 163 (2010), pp. 587–617. · Zbl 1254.15011
[15] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471–501. · Zbl 1198.90321
[16] B. Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc., 96 (1992), no. 463. · Zbl 0762.11019
[17] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970. · Zbl 0193.18401
[18] D. V. Widder, The Laplace Transform, Princeton Math. Ser. 6, Princeton University Press, Princeton, NJ, 1941. · JFM 67.0384.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.