×

Factorizations of weighted EP Banach space operators and Banach algebra elements. (English) Zbl 1334.46039

Let \(A\) be a complex unital Banach algebra. An element \(a\) of \(A\) is said to be positive if \(V(a)=\{ f(a) : f\in A^{\ast}, \| f \| \leq 1, f(1)=1 \} \subseteq \mathbb{R}^{+}\). Given an invertible element \(u\), we can consider the following norm on \(A\), \(\| x \|_{u} = \| u^{1/2} x u^{-1/2} \| \) for each \(x \in A\).
Let \(e\), \(f\) be invertible positive elements of \(A\). An element \(a\) is said to be weighted Moore-Penrose invertible with weights \(e\) and \(f\) if there exists a normalized generalized inverse \(b\) of \(a\) such that \(ab\) is a Hermitian element of \((A,\| \cdot \|_{e})\) and \(ba\) is a Hermitian element of \((A, \| \cdot \|_{f})\).
Finally, \(a \in A\) is said to be weighted EP with with weights \(e\) and \(f\) if \(a\) is weighted Moore-Penrose invertible with weights \(e\) and \(f\) and \(a\) commutes with its inverse.
In this paper, the authors characterize such elements using several factorizations.

MSC:

46H05 General theory of topological algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] J. Benítez, Moore-Penrose inverses and commuting elements of \(C^*\)-algebras , J. Math. Anal. Appl. 345 (2008), 766-770. · Zbl 1152.46046
[2] E. Boasso, On the Moore-Penrose inverse, EP Banach space operators, and EP Banach algebra elements , J. Math. Anal. Appl. 339 (2008), 1003-1014. · Zbl 1129.47001
[3] E. Boasso, Factorizations of EP Banach space operators and EP Banach algebra elements , J. Math. Anal. Appl. 379 (2011), 245-255. · Zbl 1228.47002
[4] E. Boasso and V. Rakočević, Characterizations of EP and normal Banach algebra elements and Banach space operators , Linear Algebra Appl. 435 (2011), 342-353. · Zbl 0079.33402
[5] E. Boasso, D. Mosić and D.S. Djordjević, Weighted Moore-Penrose invertible and weighted EP Banach algebra elements , J. Korean Math. Soc. 50 (2013), 1349-1367. · Zbl 1290.46037
[6] F.F. Bonsall and J. Duncan, Complete normed algebras Springer Verlag, Berlin, Heidelberg, New York, 1973.
[7] J.B. Conway, A Course in Functional Analysis Springer Verlag, New York, Berlin, Heidelberg, Tokio, 1985.
[8] D.S. Djordjević, J.J. Koliha and I. Straskaba, Factorizations of EP elements of \(C^*\)-algebras , Linear and Multilinear Algebra 57 (2009), 587-594. · Zbl 1181.46041
[9] H.R. Dowson, Spectral Theory of Linear operators London, New York, San Francisco, 1978. · Zbl 0384.47001
[10] L.T. Gardner, Square roots in Banach algebras , Proc. Amer. Math. Soc 17 (1966), 132-134. · Zbl 0143.15701
[11] R. Harte and M. Mbekhta, On generalized inverses in \(C^*\)-algebras , Studia Math. 103 (1992), 71-77. · Zbl 0810.46062
[12] R. Harte and M. Mbekhta, On generalized inverses in \(C^*\)-algebras II , Studia Math. 106 (1993), 129-138. · Zbl 0810.46063
[13] J.J. Koliha, Elements of \(C^*\)-algebras commuting with their Moore-Penrose inverse , Studia Math. 139 (2000), 81-90. · Zbl 0963.46037
[14] T. Palmer, Unbounded normal operators on Banach spaces , Trans. Amer. Math. Soc. 133 (1968), 385-414. · Zbl 0169.16901
[15] R. Penrose, A generalized inverse for matrices , Proc. Cambridge Philos. Soc. 51 (1955), 406-413. · Zbl 0065.24603
[16] V. Rakočević, Moore-Penrose inverse in Banach algebras , Proc. Roy. Irish Acad. Sect. A 88 (1988), 57-60. · Zbl 0631.46045
[17] Y. Tian and H. Wang, Characterizations of EP matrices ad weighted-EP matrices , Linear Algebra Appl. 434 (2011), 1295-1318. · Zbl 1209.15039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.