A \(C^\ast\)-algebra associated with dynamics on a graph of strings. (English) Zbl 1334.46058

A self-adjoint \(C^*\)-operator algebra \(\mathfrak{C}\) used in other papers of the first author is introduced. In the present paper, the dynamical system \[ \begin{cases} u_tt -\Delta u=0 &\text{in }\Omega \times (0,T),\\ u|_{t=0} =u_t |_{t=0} =0 &\text{in }\Omega,\\ u=f &\text{on }\Gamma \times [0,T], \end{cases} \] where \(\Omega\) is a finite compact metric graph, \(\Gamma\) is the set of its boundary vertices, \(\Delta\) is the Laplace operator in \(\Omega\) is considered. This shows the possible applications of the algebra \(\mathfrak{C}\) to inverse problems.


46L99 Selfadjoint operator algebras (\(C^*\)-algebras, von Neumann (\(W^*\)-) algebras, etc.)
34B45 Boundary value problems on graphs and networks for ordinary differential equations
35R30 Inverse problems for PDEs
35R02 PDEs on graphs and networks (ramified or polygonal spaces)
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI arXiv Euclid


[1] S. A. Avdonin, Control problems on quantum graphs, Analysis on Graphs and its Applications, In: Proc. Sympos. Pure Math., 77 (2007), 507-522. · Zbl 1153.81483 · doi:10.1090/pspum/077/2459889
[2] S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21. · Zbl 1148.35356 · doi:10.3934/ipi.2008.2.1
[3] M. I. Belishev, The Calderon problem for two-dimensional manifolds by the BC-method, SIAM J. Math. Anal., 35 (2003), 172-182. · Zbl 1048.58019 · doi:10.1137/S0036141002413919
[4] M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC-method, Inverse Problems, 20 (2004), 647-672. · Zbl 1086.35122 · doi:10.1088/0266-5611/20/3/002
[5] M. I. Belishev, On the boundary controllability of dynamical system governed by the wave equation on a class of graphs (trees), Zapiski Nauchn. Sem. S.-POMI, 308 (2004), Mat. Vopr. Teor. Rasprostr. Voln.,33, 23-47, (in Russian); English translation: J. Math. Sci. (N.Y.), 132 (2006), 11-25. · Zbl 1130.93013 · doi:10.1007/s10958-005-0471-x
[6] M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1-R67. · Zbl 1126.35089 · doi:10.1088/0266-5611/23/5/R01
[7] M. I. Belishev, Geometrization of Rings as a Method for Solving Inverse Problems, Sobolev Spaces in Mathematics III, Applications in Mathematical Physics, Ed. V. Isakov., Springer, 2008, pp.,5-24. · Zbl 1155.35484 · doi:10.1007/978-0-387-85652-0_1
[8] M. I. Belishev and M. N. Demchenko, Elements of noncommutative geometry in inverse problems on manifolds, J. Geom. Phys., 78 (2014), 29-47. · Zbl 1284.53035 · doi:10.1016/j.geomphys.2014.01.008
[9] M. I. Belishev and A. F. Vakulenko, Inverse problems on graphs: recovering the tree of strings by the BC-method, J. Inverse and Ill-Posed Problems, 14 (2006), 29-46. · Zbl 1099.35165 · doi:10.1515/156939406776237474
[10] M. I. Belishev and N. Wada, On revealing graph cycles via boundary measurements, Inverse Problems., 25 (2009), 105011, 1-25. · Zbl 1180.35547 · doi:10.1088/0266-5611/25/10/105011
[11] M. S. Birman and M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, D.Reidel Publishing Comp., 1987. · Zbl 0744.47017
[12] J. Dixmier, \(C^*\) algebras, Elsevier Science Ltd, 1983.
[13] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc. Princeton, New Jersey, 1967.
[14] J. E. Lagnese, G. Leugering and E. J. P. G. Schmidt, Modeling, Analysis and Control of Dynamic Elastic Multi-Link Structures, Birkhäuser, Boston-Basel-Berlin, 1994. · Zbl 0810.73004
[15] G. J. Murphy, \(C^*\)-Algebras and Operator Theory, Academic Press, San Diego, 1990. · Zbl 0714.46041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.