Bruce, Andrew James; Grabowska, Katarzyna; Grabowski, Janusz Linear duals of graded bundles and higher analogues of (Lie) algebroids. (English) Zbl 1334.58002 J. Geom. Phys. 101, 71-99 (2016). Summary: Graded bundles are a class of graded manifolds which represent a natural generalisation of vector bundles and include the higher order tangent bundles as canonical examples. We present and study the concept of the linearisation of graded bundle which allows us to define the notion of the linear dual of a graded bundle. They are examples of double structures, graded-linear (\(\mathcal{GL}\)) bundles, including double vector bundles as a particular case. On \(\mathcal{GL}\)-bundles we define what we shall call weighted algebroids, which are to be understood as algebroids in the category of graded bundles. They can be considered as a geometrical framework for higher order Lagrangian mechanics. Canonical examples are reductions of higher tangent bundles of Lie groupoids. Weighted algebroids represent also a generalisation of \(\mathcal {VB}\)-algebroids as defined by A. Gracia-Saz and R. A. Mehta [Adv. Math. 223, No. 4, 1236–1275 (2010; Zbl 1183.22002)] and the \(\mathcal {LA}\)-bundles of K.C.H. Mackenzie [“Double Lie algebroids and the double of a Lie bialgebroid”, arXiv:math.DG/9808081]. The resulting structures are strikingly similar to Voronov’s higher Lie algebroids, however our approach does not require the initial structures to be defined on supermanifolds. Cited in 21 Documents MSC: 58A50 Supermanifolds and graded manifolds 53C10 \(G\)-structures 53D17 Poisson manifolds; Poisson groupoids and algebroids 55R10 Fiber bundles in algebraic topology Keywords:vector bundles; graded manifolds; Lie algebroids; Lie groupoids; Poisson structures Citations:Zbl 1183.22002 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Voronov, Th. Th., Graded manifolds and Drinfeld doubles for Lie bialgebroids, (Quantization, Poisson Brackets and Beyond. Quantization, Poisson Brackets and Beyond, Contemp. Math., vol. 315 (2002), Amer. Math. Soc: Amer. Math. Soc Providence, RI), 131-168 · Zbl 1042.53056 [2] Roytenberg, D., On the structure of graded symplectic supermanifolds and Courant algebroids, (Quantization, Poisson Brackets and Beyond. Quantization, Poisson Brackets and Beyond, Contemp. Math., vol. 315 (2002), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 1036.53057 [3] Ševera, P., Some title containing the words “homotopy” and “symplectic”, e.g. this one, Trav. Math., 16, 121 (2005) · Zbl 1102.58010 [4] Grabowski, J.; Rotkiewicz, M., Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys., 59, 1285 (2009) · Zbl 1171.58300 [5] Grabowski, J.; Rotkiewicz, M., Graded bundles and homogeneity structures, J. Geom. Phys., 62, 21 (2012) · Zbl 1244.53034 [6] Vaĭntrob, A. Yu., Lie algebroids and homological vector fields, Uspekhi Mat. Nauk, 52, 428 (1997) · Zbl 0955.58017 [7] Voronov, Th. Th., Q-manifolds and higher analogs of Lie algebroids, (XXIX Workshop on Geometric Methods in Physics, AIP CP 1307 (2010), Amer. Inst. Phys: Amer. Inst. Phys Melville, NY), 191-202 · Zbl 1260.53133 [8] Grabowski, J.; Urbański, P., Algebroids - general differential calculi on vector bundles, J. Geom. Phys., 31, 111 (1999) · Zbl 0954.17014 [9] Bruce, A. J.; Grabowska, K.; Grabowski, J., Higher order mechanics on graded bundles, J. Phys. A, 48, Article 205203 pp. (2015) · Zbl 1392.53087 [10] Grabowski, J., Brakets, Int. J. Geom. Methods Mod. Phys., 10 (2013) [12] Cortés, J.; de León, M.; Marrero, J. C.; Martínez, E., Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., 24, 213 (2009) · Zbl 1161.70336 [13] Gracia-Saz &, A.; Mehta, R. A., Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math., 223, 1236 (2010) · Zbl 1183.22002 [17] Voronov, Th. Th., Q-manifolds and Mackenzie theory, Comm. Math. Phys., 315, 279 (2012) · Zbl 1261.53080 [18] Grabowska, K.; Grabowski, J., Variational calculus with constraints on general algebroids, J. Phys. A, 41, Article 175204 pp. (2008), 25 · Zbl 1137.70011 [19] Grabowska, K.; Grabowski, J.; Urbański, P., Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys., 3, 559 (2006) [20] Grabowska, K.; Grabowski, J.; Urbański, P., Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings, J. Geom. Mech., 6, 503 (2014) · Zbl 1304.70029 [21] Grabowska, K.; Vitagliano, L., Tulczyjew triples in higher derivative field theory, J. Geom. Mech., 7, 1 (2015) · Zbl 1367.70062 [22] Jóźwikowski, M.; Rotkiewicz, M., Models for higher algebroids, J. Geom. Mech., 7, 317 (2015) · Zbl 1330.58015 [23] Bruce, A. J.; Grabowska, K.; Grabowski, J., Graded bundles in the category of Lie groupoids, SIGMA, 11 (2015), 090, 25 pages. arXiv:1502.06092 [math.DG] · Zbl 1331.22006 [24] Carmeli, C.; Caston, L.; Fioresi, R., (Mathematical Foundations of Supersymmetry. Mathematical Foundations of Supersymmetry, EMS Series of Lectures in Mathematics (2011), European Mathematical Society) · Zbl 1226.58003 [25] Deligne, P.; Morgan, J. W., Notes on supersymmetry (following Joseph Bernstein), (Quantum Fields and Strings: A Course for Mathematicians, vol. 1, 2, Princeton, NJ, 1996/1997, 4197 (1999), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 1170.58302 [26] Manin, Y., Gauge Field Theory and Complex Geometry (1997), Springer · Zbl 0884.53002 [27] Varadarajan, V. S., Supersymmetry for mathematicians: An introduction, (Courant Lecture Notes, vol. 11 (2004), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1142.58009 [30] Grabowski, J., Graded contact manifolds and contact Courant algebroids, J. Geom. Phys., 68, 27 (2013) · Zbl 1280.53070 [31] Bonavolontá, G.; Poncin, N., On the category of Lie n-algebroids, J. Geom. Phys., 73, 70 (2013) · Zbl 1332.58005 [32] Pradines, J., Représentation des jets non holonomes par des morphismes vectoriels doubles soudés, C. R. Acad. Sci. Paris Sér. A, 278, 152 (1974) · Zbl 0285.58002 [33] Grabowski, J.; Urbański, P., Tangent lifts of Poisson and related structures, J. Phys. A, 28, 6743 (1995) · Zbl 0872.58028 [34] Yano, K.; Ishihara, S., Tangent and Cotangent Bundles (1973), M. Dekker: M. Dekker New York · Zbl 0262.53024 [35] Cattaneo, A. S.; Schätz, F., Introduction to supergeometry, Rev. Math. Phys., 23, 669 (2011) · Zbl 1223.58006 [36] Mackenzie, K. C.H., General theory of Lie groupoids and Lie algebroids, (London Mathematical Lecture Note Series, vol. 213 (2005), Cambridge University Press: Cambridge University Press Cambridge), xxxviii+501 pp · Zbl 0971.58015 [37] Konieczna, K.; Urbański, P., Double vector bundles and duality, Arch. Math. (Bruno), 35, 59 (1999) · Zbl 1054.53055 [38] Miron, R., The geometry of higher-order Hamiltonian spaces, (Applications to Hamiltonian Mechanics (2003), Kluwer Dordrecht), FTPH no 132 · Zbl 1044.53054 [39] Bruce, A. J., From \(L_\infty \)-algebroids to higher Schouten/Poisson structures, Rep. Math. Phys., 67, 157 (2011) · Zbl 1237.53077 [40] Bruce, A. J., On curves and jets of curves and on supermanifolds, Arch. Math. (Brno), 50, 115 (2014) · Zbl 1340.58002 [41] Kolár˘, I., On the natural operators on vector fields, Ann. Global Anal. Geom., 6, 109 (1988) · Zbl 0678.58003 [42] Martínez, E., Lagrangian Mechanics on Lie algebroids, Acta Appl. Math., 67, 295 (2001) · Zbl 1002.70013 [43] Cariñena, J. F.; Martínez, E., Lie algebroid generalization of geometric mechanics, (Lie Algebroids and Related Topics in Differential Geometry, Warsaw, 2000. Lie Algebroids and Related Topics in Differential Geometry, Warsaw, 2000, Banach Center Publ., vol. 54 (2001), Polish Acad. Sci. Inst. Math.: Polish Acad. Sci. Inst. Math. Warsaw), p. 201 · Zbl 1009.70014 [44] Popescu, M.; Popescu, P., Geometric objects defined by almost Lie structures, (Lie Algebroids and Related Topics in Differential Geometry, Warsaw, 2000 (2001), Banach Center Publications, vol. 54, Polish Acad. Sci.: Banach Center Publications, vol. 54, Polish Acad. Sci. Warsaw), 217-233 · Zbl 1001.53011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.