×

zbMATH — the first resource for mathematics

Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. (English) Zbl 1335.47043
The authors study a system of operator equations involving play and Prandtl-Ishlinskii hysteresis operators. Some equivalent form of the system is obtained. Next, the composition rule for the generalized Prandtl-Ishlinskii operators is derived.

MSC:
47J40 Equations with nonlinear hysteresis operators
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] <em>The Science of Hysteresis</em> (eds. I. Mayergoyz and G. Bertotti),, Elsevier, (2005)
[2] F. Al-Bender, The generalized Maxwell-slip model: A novel model for friction simulation and compensation,, IEEE Trans. Automat. Control, 50, 1883, (2005) · Zbl 1365.70030
[3] G. Aumann, <em>Reelle Funktionen</em>,, (German) [Real Functions], (1954) · Zbl 0056.05202
[4] A. Barrat, <em>Dynamical Processes on Complex Networks</em>,, Cambridge University Press, (2008) · Zbl 1253.90001
[5] G. Bertotti, Thermodynamics, hysteresis, and micromagnetics,, in The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti), 1, (2006) · Zbl 1148.82034
[6] M. Brokate, On the moving Preisach model,, Math. Methods Appl. Sci., 15, 145, (1992) · Zbl 0756.47052
[7] M. Brokate, Some analytical properties of the multidimensional continuous Mroz model of plasticity,, Control Cybernet, 27, 199, (1998) · Zbl 0967.74016
[8] M. Brokate, Asymptotic stability of continuum sets of periodic solutions to systems with hysteresis,, J. Math. Anal. Appl., 319, 94, (2006) · Zbl 1111.34035
[9] M. Brokate, Differential equations with hysteresis via a canonical example,, in The Science of Hysteresis (eds. I. Mayergoyz and G. Bertotti), 1, 125, (2006) · Zbl 1142.34026
[10] M. Brokate, <em>Hysteresis and Phase Transitions</em>,, Springer, (1996) · Zbl 0951.74002
[11] D. Davino, Fully coupled modeling of magneto-mechanical hysteresis through ’thermodynamic’ compatibility,, Smart Mater. Struct., 22, (2013)
[12] M. A. Janaideh, An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control,, IEEE/ASME Trans. Mechatronics, 16, 734, (2011)
[13] M. Krasnosel’skii, <em>Systems with Hysteresis</em>,, Springer, (1989)
[14] A. Krasnosel’skii, Bifurcation of forced periodic oscillations for equations with Preisach hysteresis,, J. Phys.: Conf. Ser., 22, 93, (2005)
[15] A. Krasnosel’skii, On a bifurcation governed by hysteresis nonlinearity,, NoDEA Nonlinear Differ. Equ. Appl., 9, 93, (2002) · Zbl 1013.34036
[16] P. Krejčí, The Kurzweil integral with exclusion of negligible sets,, Math. Bohem., 128, 277, (2003) · Zbl 1051.26006
[17] P. Krejčí, <em>Hysteresis, Convexity and Dissipation in Hyperbolic Equations</em>,, Gakkōtosho, (1996) · Zbl 1187.35003
[18] P. Krejčí, Inverse control of systems with hysteresis and creep,, IEE P-Contr. Theor. Ap., 148, 185, (2001)
[19] P. Krejčí, A nonexistence result for the Kurzweil integral,, Math. Bohem., 127, 571, (2002) · Zbl 1005.26005
[20] P. Krejčí, Analytical solution for a class of network dynamics with mechanical and financial applications,, Phys. Rev. E, 90, (2014)
[21] P. Krejčí, Generalized variational inequalities,, J. Convex Anal., 9, 159, (2002) · Zbl 1001.49014
[22] P. Krejčí, Properties of solutions to a class of differential models incorporating Preisach hysteresis operator,, Phys. D, 241, 2010, (2012)
[23] P. Krejčí, Stability results for a soil model with singular hysteretic hydrology,, J. Phys.: Conf. Ser. 268 (2011), 268, (2011)
[24] K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach,, Eur. J. Control, 9, 407, (2003) · Zbl 1293.93213
[25] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter,, Czechoslovak Math. J., 7, 418, (1957) · Zbl 0090.30002
[26] Lemaitre, <em>Mechanics of Solid Materials</em>,, Cambridge University Press, (1990) · Zbl 0743.73002
[27] I. Mayergoyz, <em>Mathematical Models of Hysteresis and Their Applications</em>,, Elsevier, (2003)
[28] L. Prandtl, Ein Gedankenmodell zur kinetischen Theorie der festen Körper,, (German) [A model for kinetic theory of solid bodies], 8, 85, (1928) · JFM 54.0847.04
[29] Š. Schwabik, On a modified sum integral of Stieltjes type,, Časopis Pěst. Mat., 98, 274, (1973) · Zbl 0266.26007
[30] M. Tvrdý, Regulated functions and the Perron-Stieltjes integral,, Časopis Pêst. Mat., 114, 187, (1989) · Zbl 0671.26006
[31] A. Visintin, <em>Differential Models of Hysteresis</em>,, Springer, (1994) · Zbl 0820.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.