×

Construction of Levi processes on path spaces of Lie groups. (English) Zbl 1335.60074

Summary: Given a compact Lie group and a conjugate-invariant Levi process on it, generated by the operator \((L,D(L))\), we construct the Levi process on the path space of \(G\), associated with the convolution semigroup \(\{\mu_t:t\geq0\}\) of probability measures, where \(\mu_t\) is the distribution of the Levi process on \(G\) generated by \((tL,D(L))\). The constructed process is obtained as the weak limit of piecewise constant paths, which, as well as proving its existence and properties, provides finite-dimensional approximations of Chernoff type to the integrals with respect to its distribution.

MSC:

60G51 Processes with independent increments; Lévy processes
60F17 Functional limit theorems; invariance principles
60F05 Central limit and other weak theorems
60J65 Brownian motion
60J60 Diffusion processes
Full Text: DOI

References:

[1] 1. D. Applebaum, Probability on Compact Lie Groups (Springer, 2014). genRefLink(16, ’S0219025716500028BIB001’, ’10.1007
[2] 2. P. Billingsley, Convergence of Probability Measures, 2nd edn. (John Wiley & Sons, 1999). genRefLink(16, ’S0219025716500028BIB002’, ’10.1002 · Zbl 0944.60003
[3] 3. B. K. Driver and M. Rockner, Construction of diffusions on path and loops spaces of compact Riemannian manifolds, C. R. Acad. Sci. Paris315 (1992) 603-608. genRefLink(128, ’S0219025716500028BIB003’, ’A1992JN20000022’);
[4] 4. B. K. Driver and V. K. Srimurthy, Absolute continuity of heat kernel measure with pinned Wiener measure on loop groups, Ann. Probab.29 (2001) 691-723. genRefLink(16, ’S0219025716500028BIB004’, ’10.1214 · Zbl 1018.60059
[5] 5. A. Eberle, Diffusions on path and loop spaces: Existence, finite dimensional approximation and Holder continuity, Probab. Th. Relat. Fields109 (1997) 77-99. genRefLink(16, ’S0219025716500028BIB005’, ’10.1007
[6] 6. J. B. Epperson and T. Lohrenz, Brownian motion and the heat semigroup on the path space of a compact Lie group, Pacific J. Math.161 (1993) 233-253. genRefLink(16, ’S0219025716500028BIB006’, ’10.2140
[7] 7. S. N. Ethier and T. G. Kurtz, Markov Processes, Characterizations and Convergence (John Wiley & Sons, 1986). genRefLink(16, ’S0219025716500028BIB007’, ’10.1002 · Zbl 0592.60049
[8] 8. J. A. Goldstein, Semigroups of Linear Operators and Applications (Oxford Univ. Press, 1985). · Zbl 0592.47034
[9] 9. A. A. Kalinichenko, Feynman approximation of integrals with respect to Brownian sheet, Infin. Dimens. Anal. Quantum. Probab. Relat. Top.18 (2015) 1550008. [Abstract] genRefLink(128, ’S0219025716500028BIB009’, ’000351552500008’); · Zbl 1322.60080
[10] 10. O. Kallenberg, Foundations of Modern Probability, 2nd edn. (Springer-Verlag, 2001). · Zbl 0892.60001
[11] 11. M. Liao, Levi Processes in Lie Groups (Cambridge Univ. Press, 2004). genRefLink(16, ’S0219025716500028BIB011’, ’10.1017
[12] 12. M. Malliavin and P. Malliavin, Integration on loop groups II. Heat equation for the Wiener measure, J. Funct. Anal.93 (1990) 207-237. genRefLink(16, ’S0219025716500028BIB012’, ’10.1016
[13] 13. J. R. Norris, Twisted sheets, J. Funct. Anal.132 (1995) 273-334. genRefLink(16, ’S0219025716500028BIB013’, ’10.1006
[14] 14. V. K. Srimurthy, On the equivalence of measures on loop space, Probab. Th. Relat. Fields118 (2000) 522-546. genRefLink(16, ’S0219025716500028BIB014’, ’10.1007
[15] 15. O. G. Smolyanov, H. von Weizsacker and O. Wittich, Chernoff’s theorem and discrete time approximations of Brownian motion on manifolds, Potential Anal.26 (2007) 1-29. genRefLink(16, ’S0219025716500028BIB015’, ’10.1007
[16] 16. O. G. Smolyanov, H. von Weizsacker and O. Wittich, Brownian motion on a manifold as limit of stepwise conditioned standard Brownian motions, Can. Math. Soc. Conf. Proc.29 (2000) 589602. · Zbl 0978.58015
[17] 17. J. B. Walsh, Martingales with Multidimensional Parameter and Stochastic Integrals in the Plane, Lecture Notes in Mathematics, Vol. 1215 (Springer, 1986), pp. 329-491. genRefLink(16, ’S0219025716500028BIB017’, ’10.1007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.