Pellarin, Federico Values of certain \(L\)-series in positive characteristic. (English) Zbl 1336.11064 Ann. Math. (2) 176, No. 3, 2055-2093 (2012). Summary: We introduce a class of deformations of the values of the Goss zeta function. We prove, with the use of the theory of deformations of vectorial modular forms as well as with other techniques, a formula for their value at 1, and some arithmetic properties of values at other positive integers. Our formulas involve Anderson and Thakur’s function \(\omega\). We discuss how our formulas may be used to investigate the existence of a kind of functional equation for the Goss zeta function. Cited in 9 ReviewsCited in 40 Documents MSC: 11M38 Zeta and \(L\)-functions in characteristic \(p\) 11R58 Arithmetic theory of algebraic function fields 11F52 Modular forms associated to Drinfel’d modules Keywords:\(L\)-functions in positive characteristic; Drinfeld modular forms; function fields of positive characteristic PDF BibTeX XML Cite \textit{F. Pellarin}, Ann. Math. (2) 176, No. 3, 2055--2093 (2012; Zbl 1336.11064) Full Text: DOI arXiv OpenURL References: [1] G. W. Anderson, ”\(t\)-motives,” Duke Math. J., vol. 53, iss. 2, pp. 457-502, 1986. · Zbl 0679.14001 [2] G. W. Anderson, ”Rank one elliptic \(A\)-modules and \(A\)-harmonic series,” Duke Math. J., vol. 73, iss. 3, pp. 491-542, 1994. · Zbl 0807.11032 [3] G. W. Anderson, ”Log-algebraicity of twisted \(A\)-harmonic series and special values of \(L\)-series in characteristic \(p\),” J. Number Theory, vol. 60, iss. 1, pp. 165-209, 1996. · Zbl 0868.11031 [4] G. W. Anderson, D. W. Brownawell, and M. A. Papanikolas, ”Determination of the algebraic relations among special \(\Gamma\)-values in positive characteristic,” Ann. of Math., vol. 160, iss. 1, pp. 237-313, 2004. · Zbl 1064.11055 [5] G. W. Anderson and D. S. Thakur, ”Tensor powers of the Carlitz module and zeta values,” Ann. of Math., vol. 132, iss. 1, pp. 159-191, 1990. · Zbl 0713.11082 [6] L. Carlitz, ”On certain functions connected with polynomials in a Galois field,” Duke Math. J., vol. 1, iss. 2, pp. 137-168, 1935. · Zbl 0012.04904 [7] L. Carlitz, ”An analogue of the von Staudt-Clausen theorem,” Duke Math. J., vol. 3, iss. 3, pp. 503-517, 1937. · Zbl 0017.19501 [8] L. Carlitz, ”An analogue of the Staudt-Clausen theorem,” Duke Math. J., vol. 7, pp. 62-67, 1940. · Zbl 0024.24410 [9] L. Carlitz, ”An analogue of the Bernoulli polynomials,” Duke Math. J., vol. 8, pp. 405-412, 1941. · Zbl 0025.09804 [10] D. R. Hayes, ”Explicit class field theory for rational function fields,” Trans. Amer. Math. Soc., vol. 189, pp. 77-91, 1974. · Zbl 0292.12018 [11] G. Damamme, ”Étude de \(L(s,\chi)/\pi^s\) pour des fonctions \(L\) relatives à \({\mathbf F}_q(\?(T^{-1})\?)\) et associées à des caractères de degré 1,” J. Théor. Nombres Bordeaux, vol. 11, iss. 2, pp. 369-385, 1999. · Zbl 0994.11027 [12] L. Euler, ”Introductio in Analysin Infinitorum,” in Opera (1), Lausanne: Bousquet and Socios., 1748, vol. 8. · Zbl 0096.00302 [13] L. Euler, ”Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques,” Mem. Acad. Sci. Berlin, vol. 17, pp. 83-106, 1761. [14] M. Kaneko and D. Zagier, ”A generalized Jacobi theta function and quasimodular forms,” in The Moduli Space of Curves, Boston, MA: Birkhäuser, 1995, vol. 129, pp. 165-172. · Zbl 0892.11015 [15] E. Gekeler, ”On the coefficients of Drinfel\('\)d modular forms,” Invent. Math., vol. 93, iss. 3, pp. 667-700, 1988. · Zbl 0653.14012 [16] E. Gekeler, ”Quasi-periodic functions and Drinfel\('\)d modular forms,” Compositio Math., vol. 69, iss. 3, pp. 277-293, 1989. · Zbl 0703.11066 [17] L. Gerritzen and M. van der Put, Schottky Groups and Mumford Curves, New York: Springer-Verlag, 1980, vol. 817. · Zbl 0442.14009 [18] D. Goss, ”Von Staudt for \({\mathbf F}_q[T]\),” Duke Math. J., vol. 45, iss. 4, pp. 885-910, 1978. · Zbl 0404.12013 [19] D. Goss, ”\(v\)-adic zeta functions, \(L\)-series and measures for function fields,” Invent. Math., vol. 55, iss. 2, pp. 107-119, 1979. · Zbl 0402.12006 [20] D. Goss, ”\(\pi \)-adic Eisenstein series for function fields,” Compositio Math., vol. 41, iss. 1, pp. 3-38, 1980. · Zbl 0422.10020 [21] D. Goss, ”The algebraist’s upper half-plane,” Bull. Amer. Math. Soc., vol. 2, iss. 3, pp. 391-415, 1980. · Zbl 0433.14017 [22] D. Goss, ”Fourier series, measures and divided power series in the theory of function fields,” \(K\)-Theory, vol. 2, iss. 4, pp. 533-555, 1989. · Zbl 0675.12006 [23] D. Goss, Basic Structures of Function Field Arithmetic, New York: Springer-Verlag, 1996, vol. 35. · Zbl 0874.11004 [24] D. Goss, ”Zeta phenomenology,” in Noncommutative Geometry, Arithmetic, and Related Topics, Baltimore, MD: Johns Hopkins Univ. Press, 2011, pp. 159-182. · Zbl 1270.11094 [25] D. Goss, On the \(L\)-series of F. Pellarin, 2012. · Zbl 1281.11045 [26] M. Kaneko and M. Koike, ”On modular forms arising from a differential equation of hypergeometric type,” Ramanujan J., vol. 7, iss. 1-3, pp. 145-164, 2003. · Zbl 1050.11047 [27] M. Kaneko and M. Koike, ”On extremal quasimodular forms,” Kyushu J. Math., vol. 60, iss. 2, pp. 457-470, 2006. · Zbl 1126.11023 [28] M. Knopp and G. Mason, ”Vector-valued modular forms and Poincaré series,” Illinois J. Math., vol. 48, iss. 4, pp. 1345-1366, 2004. · Zbl 1145.11309 [29] S. Lang, Elliptic Functions, Second ed., New York: Springer-Verlag, 1987, vol. 112. · Zbl 0615.14018 [30] B. A. Lutes and M. A. Papanikolas, Algebraic independence of Goss \(L\)-functions at \(s=1\), 2011. · Zbl 1328.11082 [31] G. Mason, ”Vector-valued modular forms and linear differential operators,” Int. J. Number Theory, vol. 3, iss. 3, pp. 377-390, 2007. · Zbl 1197.11054 [32] M. A. Papanikolas, ”Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms,” Invent. Math., vol. 171, iss. 1, pp. 123-174, 2008. · Zbl 1235.11074 [33] F. Pellarin, ”Aspects de l’indépendance algébrique en caractéristique non nulle (d’après Anderson, Brownawell, Denis, Papanikolas, Thakur, Yu, et al.),” in Séminaire Bourbaki. Vol. 2006/2007, , 2008, vol. 317, p. exp. no. 973, viii, 205-242. · Zbl 1185.11048 [34] F. Pellarin, Estimating the order of vanishing at infinity of Drinfeld quasi-modular forms. · Zbl 1373.11037 [35] F. Pellarin, An introduction to Mahler’s method for transcendence and algebraic independence, 2010. [36] G. Segal and G. Wilson, ”Loop groups and equations of KdV type,” Inst. Hautes Études Sci. Publ. Math., vol. 61, pp. 5-65, 1985. · Zbl 0592.35112 [37] D. S. Thakur, Function Field Arithmetic, River Edge, NJ: World Scientific Publishing Co., 2004. · Zbl 1061.11001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.