×

Representations of rational Cherednik algebras of \(G(m,r,n)\) in positive characteristic. (English) Zbl 1336.20006

Summary: We study lowest-weight irreducible representations of rational Cherednik algebras attached to the complex reflection groups \(G(m,r,n)\) in characteristic \(p\). Our approach is mostly from the perspective of commutative algebra. By studying the kernel of the contravariant bilinear form on Verma modules, we obtain formulas for a Hilbert series of irreducible representations in a number of cases, and present conjectures in other cases. We observe that the form of the Hilbert series of irreducible representations and the generators of the kernel tend to be determined by the value of \(n\) modulo \(p\) and are related to special classes of subspace arrangements. Perhaps the most novel (conjectural) discovery from the commutative algebra perspective is that the generators of the kernel can be given the structure of a “matrix regular sequence” in some instances, which we prove in some small cases.

MSC:

20C08 Hecke algebras and their representations
20F55 Reflection and Coxeter groups (group-theoretic aspects)
16S99 Associative rings and algebras arising under various constructions
16G20 Representations of quivers and partially ordered sets
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

Software:

GAP; Macaulay2; SageMath
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Martina Balagović and Harrison Chen, Representations of rational Cherednik algebras in positive characteristic , J. Pure Appl. Alg. 217 (2013), 716-740. · Zbl 1283.20002 · doi:10.1016/j.jpaa.2012.09.015
[2] —-, Category \(\cO\) for rational Cherednik algebras \(H_{t,c}(GL_2(\mathbb{F}_p),\fh)\) in characteristic \(p\) , J. Pure Appl. Alg. 217 (2013), 1683-1699. · Zbl 1283.20003 · doi:10.1016/j.jpaa.2012.12.005
[3] Roman Bezrukavnikov, Michael Finkelberg and Victor Ginzburg, Cherednik algebras and Hilbert schemes in characteristic \(p\), with appendices by Pavel Etingof and Vadim Vologodsky , Rep. Theor. 10 (2006), 254-298. · Zbl 1130.14005 · doi:10.1090/S1088-4165-06-00309-8
[4] Christine Berkesch, Stephen Griffeth and Steven V Sam, Jack polynomials as fractional quantum Hall states and the Betti numbers of the \((k+1)\)-equals ideal , Comm. Math. Phys. 330 (2014), 415-434. · Zbl 1294.81387 · doi:10.1007/s00220-014-2010-4
[5] Fabrizio Colombo, Alberto Damiano, Irene Sabadini and Daniele C. Struppa, A surjectivity theorem for differential operators on spaces of regular functions , Comp. Var. Theor. Appl. 50 (2005), 389-400. · Zbl 1096.30040 · doi:10.1080/02781070500132679
[6] E.D. Davis, A.V. Geramita and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem , Proc. Amer. Math. Soc. 93 (1985), 593-597. · Zbl 0575.14040 · doi:10.2307/2045527
[7] John A. Eagon and Victor Reiner, Resolutions of Stanley-Reisner rings and Alexander duality , J. Pure Appl. Alg. 130 (1998), 265-275. · Zbl 0941.13016 · doi:10.1016/S0022-4049(97)00097-2
[8] David Eisenbud, Commutative algebra with a view toward algebraic geometry , Grad. Texts Math. 150 , Springer-Verlag, 1995. · Zbl 0819.13001
[9] —-, The geometry of Syzygies , Grad. Texts Math. 229 , Springer-Verlag, 2005.
[10] David Eisenbud and Sorin Popescu, The projective geometry of the Gale transform , J. Alg. 230 (2000), 127-173. · Zbl 1060.14528 · doi:10.1006/jabr.1999.7940
[11] Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , Invent. Math. 147 (2002), 243-348. · Zbl 1061.16032 · doi:10.1007/s002220100171
[12] Pavel Etingof, Eugene Gorsky and Ivan Losev, Representations of rational Cherednik algebras with minimal support and torus knots , · Zbl 1321.16020 · doi:10.1016/j.aim.2015.03.003
[13] Pavel Etingof and Xiaoguang Ma, Lecture notes on Cherednik algebras ,
[14] The GAP Group, GAP - Groups, algorithms, and programming , Version 4.4.12; 2008. (http://www.gap-system.org)
[15] Iain Gordon, Baby Verma modules for rational Cherednik algebras , Bull. Lond. Math. Soc. 35 (2003), 321-336. · Zbl 1042.16017 · doi:10.1112/S0024609303001978
[16] Daniel R. Grayson and Michael E. Stillman, Macaulay 2, A software system for research in algebraic geometry , available at http://www.math.uiuc.edu/Macaulay2/.
[17] Stephen Griffeth, Jack polynomials and the coinvariant ring of \(G(r,p,n)\) , Proc. Amer. Math. Soc. 137 (2009), 1621-1629. · Zbl 1229.05277 · doi:10.1090/S0002-9939-08-09697-4
[18] Adalbert Kerber, Representations of permutation groups I, Lect. Notes Math. 240 , Springer-Verlag, Berlin, 1971. · Zbl 0232.20014
[19] Frédéric Latour, Representations of rational Cherednik algebras of rank 1 in positive characteristic , J. Pure Appl. Alg. 195 (2005), 97-112. · Zbl 1079.16006 · doi:10.1016/j.jpaa.2004.03.010
[20] Shuo-Yen Robert Li and Wen Ch’ing Winnie Li, Independence numbers of graphs and generators of ideals , Combinator. 1 (1981), 55-61. · Zbl 0524.05037 · doi:10.1007/BF02579177
[21] Carl Lian, Representations of Cherednik algebras associated to symmetric and dihedral groups in positive characteristic ,
[22] M.H. Peel, Specht modules and symmetric groups , J. Alg. 36 (1975), 88-97. · Zbl 0313.20005 · doi:10.1016/0021-8693(75)90158-1
[23] G.C. Shephard and J.A. Todd, Finite unitary reflection groups , Canad. J. Math. 6 (1954), 274-304. · Zbl 0055.14305 · doi:10.4153/CJM-1954-028-3
[24] W.A. Stein, et al., Sage mathematics software (Version 4.6.1), The Sage Development Team, 2011, http://www.sagemath.org.
[25] John R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products , Pac. J. Math. 140 (1989), 353-396. · Zbl 0641.20011 · doi:10.2140/pjm.1989.140.353
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.