×

On some properties of the shortest curve in a compound domain. (English. Russian original) Zbl 1336.49053

Differ. Equ. 51, No. 12, 1626-1636 (2015); translation from Differ. Uravn. 51, No. 12, 1647-1657 (2015).
Summary: We consider a state space domain defined by a regular system of equality and inequality constraints. We study the properties of the shortest curve, that is, the curve that has the minimum length of all smooth curves joining two given points of the domain and lying entirely in the domain. If inequality constraints are absent, then the shortest curve is a geodesic. We show that the shortest curve is a function of the class \(W_{2,\infty}\), derive the equation of the shortest curve, and study some other properties of this curve.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arutyunov, A.V.; Karamzin, D.Y.u., Non-degenerate necessary optimality conditions for the optimal control problem with equality-type state constraints, (2015)
[2] Arnol’d, V.I., Teoriya katastrof (Catastrophe Theory), Moscow: Nauka, 1990. · Zbl 0704.58001
[3] Gamkrelidze, R.V., Time-optimal processes with bounded state coordinates, Dokl. Akad. Nauk SSSR, 125, 475-478, (1959) · Zbl 0090.30801
[4] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983. · Zbl 0516.49001
[5] Dubovitskii, A.Y.a.; Milyutin, A.A., Necessary conditions for a weak extremum in optimal control problems with mixed inequality constraints, Zh. Vychisl. Mat. Mat. Fiz., 8, 725-779, (1968) · Zbl 0167.09001
[6] Afanas’ev, A.P., Dikusar, V.V., Milyutin, A.A., and Chukanov, S.A., Neobkhodimoe uslovie v optimal’nom upravlenii (Necessary Condition in Optimal Control), Moscow: Nauka, 1990. · Zbl 0724.49014
[7] Mordukhovich, B.S., Maximum principle in problems of time optimal control with nonsmooth constraints, Appl. Math. Mech., 40, 960-969, (1976) · Zbl 0362.49017
[8] Arutyunov, A.V.; Karamzin, D.Y.u.; Pereira, F.L., The maximum principle for optimal control problems with state constraints by R.V. gamkrelidze: revisited, J. Optim. Theory Appl., 149, 474-493, (2011) · Zbl 1221.49026
[9] Arutyunov, A.V.; Karamzin, D.Y.u., On some continuity properties of the measure Lagrange multiplier from the maximum principle for state constrained problems, SIAM J. Control Optim., 53, 2514-2540, (2015) · Zbl 1342.49057
[10] Hager, W.W., Lipschitz continuity for constrained processes, SIAM J. Control Optim., 17, 321-338, (1979) · Zbl 0426.90083
[11] Galbraith, G.N.; Vinter, R.B., Lipschitz continuity of optimal controls for state constrained problems, SIAM J. Control Optim., 42, 1727-1744, (2003) · Zbl 1048.49026
[12] Maurer, H., Differential stability in optimal control problems, Appl. Math. Optim., 5, 283-295, (1979) · Zbl 0428.49029
[13] Arutyunov, A.V., Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints, Differ. Uravn., 48, 1621-1630, (2012)
[14] Zakharov, E.V.; Karamzin, D.Y.u., On the study of conditions for the continuity of the Lagrange multiplier measure in problems with state constraints, Differ. Uravn., 51, 395-401, (2015)
[15] Arutyunov, A.V.; Tynyanskii, N.T., The maximum principle in a problem with state constraints, Izv. Akad. Nauk SSSR Tekhn. Kibern., 4, 60-68, (1984)
[16] Arutyunov, A.V., On necessary conditions for optimality in a problem with state constraints, Dokl. Akad. Nauk SSSR, 280, 1033-1037, (1985)
[17] Dubovitskii, A.Y.a.; Dubovitskii, V.A., Necessary conditions for a strong maximum in optimal control problems with degeneration of terminal and state constraints, Uspekhi Mat. Nauk, 40, 175-176, (1985) · Zbl 0572.49006
[18] Arutyunov, A.V., On the theory of the maximum principle in optimal control problems with state constraints, Dokl. Akad. Nauk SSSR, 304, 11-14, (1989)
[19] Vinter, R.B.; Ferreira, M.M.A., When Is the maximum principle for state constrained problems nondegenerate, J. Math. Anal. Appl., 187, 438-467, (1994) · Zbl 0823.49003
[20] Arutyunov, A.V.; Aseev, S.M., State constraints in optimal control. the degeneracy phenomenon, Systems Control Lett., 26, 267-273, (1995) · Zbl 0873.49015
[21] Karamzin, D.Y.u., Necessary conditions for an extremum in a control problem with state constraints, Zh. Vychisl. Mat. Mat. Fiz., 47, 1123-1150, (2007)
[22] Karamzin, D.Y.u., The maximum principle in a control problem with bounded state coordinates, Avtomat. i Telemekh., 2, 26-38, (2007)
[23] Arutyunov, A.V.; Karamzin, D.Y.u., Maximum principle in an optimal control problem with equality state constraints, Differ. Uravn., 51, 34-47, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.