×

Quenched limit theorems for Fourier transforms and periodogram. (English) Zbl 1336.60038

Summary: In this paper, we study the quenched central limit theorem for the discrete Fourier transform. We show that the Fourier transform of a stationary ergodic process, suitably centered and normalized, satisfies the quenched CLT conditioned by the past sigma algebra. For functions of Markov chains with stationary transitions, this means that the CLT holds with respect to the law of the chain started at a point for almost all starting points. It is necessary to emphasize that no assumption of irreducibility with respect to a measure or other regularity conditions are imposed for this result. We also discuss necessary and sufficient conditions for the validity of the quenched CLT without centering. The results are highly relevant for the study of the periodogram of a Markov process with stationary transitions which does not start from equilibrium. The proofs are based on a nice blend of harmonic analysis, theory of stationary processes, martingale approximation and ergodic theory.

MSC:

60F05 Central limit and other weak theorems
60J05 Discrete-time Markov processes on general state spaces
60G10 Stationary stochastic processes
60G42 Martingales with discrete parameter
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Billingsley, P. (1995). Probability and Measure , 3rd ed. Wiley Series in Probability and Mathematical Statistics . New York: Wiley. · Zbl 0822.60002
[2] Billingsley, P. (1999). Convergence of Probability Measures , 2nd ed. Wiley Series in Probability and Statistics : Probability and Statistics . New York: Wiley. · Zbl 0944.60003
[3] Bradley, R.C. (2007). Introduction to Strong Mixing Conditions. Vol. 1. Heber City, UT: Kendrick Press. · Zbl 1133.60001
[4] Brockwell, P.J. and Davis, R.A. (1991). Time Series : Theory and Methods , 2nd ed. Springer Series in Statistics . New York: Springer. · Zbl 0709.62080
[5] Carleson, L. (1966). On convergence and growth of partial sums of Fourier series. Acta Math. 116 135-157. · Zbl 0144.06402 · doi:10.1007/BF02392815
[6] Cohen, G. and Conze, J.-P. (2013). The CLT for rotated ergodic sums and related processes. Discrete Contin. Dyn. Syst. 33 3981-4002. · Zbl 1278.60047 · doi:10.3934/dcds.2013.33.3981
[7] Cuny, C. and Merlevède, F. (2014). On martingale approximations and the quenched weak invariance principle. Ann. Probab. 42 760-793. · Zbl 1354.60031 · doi:10.1214/13-AOP856
[8] Cuny, C., Merlevède, F. and Peligrad, M. (2013). Law of the iterated logarithm for the periodogram. Stochastic Process. Appl. 123 4065-4089. · Zbl 1316.60037 · doi:10.1016/j.spa.2013.05.009
[9] Cuny, C. and Peligrad, M. (2012). Central limit theorem started at a point for stationary processes and additive functionals of reversible Markov chains. J. Theoret. Probab. 25 171-188. · Zbl 1247.60031 · doi:10.1007/s10959-010-0321-8
[10] Cuny, C. and Volný, D. (2013). A quenched invariance principle for stationary processes. ALEA Lat. Am. J. Probab. Math. Stat. 10 107-115. · Zbl 1277.60056
[11] Dedecker, J., Gouëzel, S. and Merlevède, F. (2010). Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 46 796-821. · Zbl 1206.60032 · doi:10.1214/09-AIHP343
[12] Dedecker, J., Merlevède, F. and Peligrad, M. (2014). A quenched weak invariance principle. Ann. Inst. Henri Poincaré Probab. Stat. 50 872-898. · Zbl 1304.60031 · doi:10.1214/13-AIHP553
[13] Derriennic, Y. and Lin, M. (2001). The central limit theorem for Markov chains with normal transition operators, started at a point. Probab. Theory Related Fields 119 508-528. · Zbl 0974.60017 · doi:10.1007/s004400000113
[14] de la Peña, V.H. and Giné, E. (1999). Decoupling : From Dependence to Independence , Randomly Stopped Processes. \(U\)-Statistics and Processes. Martingales and Beyond. Probability and Its Applications ( New York ). New York: Springer. · Zbl 0918.60021
[15] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45-76. · Zbl 0926.60056 · doi:10.1137/S0036144598338446
[16] Dunford, N. and Schwartz, J.T. (1988). Linear Operators : General Theory. Part I. Wiley Classics Library . New York: Wiley. With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original. · Zbl 0635.47001
[17] Eisner, T., Farkas, B., Haase, M. and Nagel, R. (2012). Operator Theoretic Aspects of Ergodic Theory . Berlin: Springer. · Zbl 1353.37002 · doi:10.1007/978-3-319-16898-2
[18] Gänssler, P. and Häusler, E. (1979). Remarks on the functional central limit theorem for martingales. Z. Wahrsch. Verw. Gebiete 50 237-243. · Zbl 0402.60032 · doi:10.1007/BF00534147
[19] Gordin, M.I. (1969). The central limit theorem for stationary processes. Dokl. Akad. Nauk SSSR 188 739-741. · Zbl 0212.50005
[20] Gordin, M.I. and Lifšic, B.A. (1981). A remark about a Markov process with normal transition operator. In Third Vilnius Conf. Proba. Stat. , Akad. Nauk Litovsk , Vol. 1 147-148 (in Russian), Vilnius.
[21] Hall, P. and Heyde, C.C. (1980). Martingale Limit Theory and Its Application. Probability and Mathematical Statistics . New York: Academic Press. · Zbl 0462.60045
[22] Herrndorf, N. (1983). Stationary strongly mixing sequences not satisfying the central limit theorem. Ann. Probab. 11 809-813. · Zbl 0513.60033 · doi:10.1214/aop/1176993529
[23] Hunt, R.A. and Young, W.S. (1974). A weighted norm inequality for Fourier series. Bull. Amer. Math. Soc. 80 274-277. · Zbl 0283.42004 · doi:10.1090/S0002-9904-1974-13458-0
[24] Maxwell, M. and Woodroofe, M. (2000). Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 713-724. · Zbl 1044.60014 · doi:10.1214/aop/1019160258
[25] Peligrad, M. (2013). Quenched Invariance Principles Via Martingale Approximation. Fields Institute Communications . Springer. To appear. Available at . · Zbl 1368.60037
[26] Peligrad, M. and Wu, W.B. (2010). Central limit theorem for Fourier transforms of stationary processes. Ann. Probab. 38 2009-2022. · Zbl 1206.60026 · doi:10.1214/10-AOP530
[27] Rassoul-Agha, F. and Seppäläinen, T. (2007). Quenched invariance principle for multidimensional ballistic random walk in a random environment with a forbidden direction. Ann. Probab. 35 1-31. · Zbl 1126.60090 · doi:10.1214/009117906000000610
[28] Rassoul-Agha, F. and Seppäläinen, T. (2008). An almost sure invariance principle for additive functionals of Markov chains. Statist. Probab. Lett. 78 854-860. · Zbl 1139.60317 · doi:10.1016/j.spl.2007.09.011
[29] Rio, E. (2000). Théorie Asymptotique des Processus Aléatoires Faiblement Dépendants. Mathématiques & Applications ( Berlin ) [ Mathematics & Applications ] 31 . Berlin: Springer. · Zbl 0944.60008
[30] Rootzén, H. (1976). Gordin’s theorem and the periodogram. J. Appl. Probab. 13 365-370. · Zbl 0346.60025 · doi:10.2307/3212842
[31] Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 43-47. · Zbl 0070.13804 · doi:10.1073/pnas.42.1.43
[32] Rosenblatt, M. (1961). Independence and dependence. In Proc. 4 th Berkeley Sympos. Math. Statist. and Prob. , Vol. II 431-443. Berkeley, CA: Univ. California Press. · Zbl 0105.11802
[33] Rosenblatt, M. (1981). Limit theorems for Fourier transforms of functionals of Gaussian sequences. Z. Wahrsch. Verw. Gebiete 55 123-132. · Zbl 0447.60016 · doi:10.1007/BF00535155
[34] Rosenblatt, M. (1985). Stationary Sequences and Random Fields . Boston, MA: Birkhäuser. · Zbl 0597.62095
[35] Schuster, A. (1898). On the investigation of hidden periodicities with application to a supposed 26 day period of meteorological phenomena. Terrestrial Magnetism and Atmospheric Electricity 3 13-41.
[36] Terrin, N. and Hurvich, C.M. (1994). An asymptotic Wiener-Itô representation for the low frequency ordinates of the periodogram of a long memory time series. Stochastic Process. Appl. 54 297-307. · Zbl 0810.62023 · doi:10.1016/0304-4149(94)00020-4
[37] Volný, D. and Woodroofe, M. (2010). An example of non-quenched convergence in the conditional central limit theorem for partial sums of a linear process. In Dependence in Probability , Analysis and Number Theory 317-322. Heber City, UT: Kendrick Press. · Zbl 1213.60051
[38] Walker, A.M. (1965). Some asymptotic results for the periodogram of a stationary time series. J. Aust. Math. Soc. 5 107-128. · Zbl 0128.38701 · doi:10.1017/S1446788700025921
[39] Wiener, N. and Wintner, A. (1941). On the ergodic dynamics of almost periodic systems. Amer. J. Math. 63 794-824. · Zbl 0026.13102 · doi:10.2307/2371623
[40] Woodroofe, M. (1992). A central limit theorem for functions of a Markov chain with applications to shifts. Stochastic Process. Appl. 41 33-44. · Zbl 0762.60023 · doi:10.1016/0304-4149(92)90145-G
[41] Wu, W.B. (2005). Fourier transforms of stationary processes. Proc. Amer. Math. Soc. 133 285-293 (electronic). · Zbl 1055.60016 · doi:10.1090/S0002-9939-04-07528-8
[42] Wu, W.B. and Woodroofe, M. (2000). A central limit theorem for iterated random functions. J. Appl. Probab. 37 748-755. · Zbl 0969.60032 · doi:10.1239/jap/1014842833
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.