zbMATH — the first resource for mathematics

Adaptive estimation of convex polytopes and convex sets from noisy data. (English) Zbl 1336.62127
Summary: We estimate convex polytopes and general convex sets in \(\mathbb{R}^{d}\), \(d\geq 2\), in the regression framework. We measure the risk of our estimators using a \(L^{1}\)-type loss function and prove upper bounds on these risks. We show, in the case of convex polytopes, that these estimators achieve the minimax rate. For convex polytopes, this minimax rate is \(\frac{\ln n}{n}\), which differs from the parametric rate for non-regular families by a logarithmic factor, and we show that this extra factor is essential. Using polytopal approximations we extend our results to general convex sets, and we achieve the minimax rate up to a logarithmic factor. In addition we provide an estimator that is adaptive with respect to the number of vertices of the unknown polytope, and we prove that this estimator is optimal in all classes of convex polytopes with a given number of vertices.

62H12 Estimation in multivariate analysis
52A27 Approximation by convex sets
60D05 Geometric probability and stochastic geometry
62G07 Density estimation
Full Text: DOI Euclid
[1] Alon N., Spencer J. H. (2008) The probabilistic method, Wiley. · Zbl 1148.05001
[2] Bárány I. (2007) Random Polytopes, convex bodies, and approximation, in Baddeley, A. J., Bárány, I., Shneider, R., Weil, W. (2004) Stochastic Geometry, C.I.M.E. Summer School, Martina Franca, Italy (W. Weil, ed.), Lecture Notes in Mathematics 1892, pp. 77-118, Springer, Berlin. · Zbl 1123.60006
[3] Berger M. (1978) Géométrie, Tome 3: Convexes et polytopes, polyèdres réguliers, aires et volumes, Ed. Cedic/Fernand Nathan. · Zbl 0423.51001
[4] Bronshtein E. M. (1976) \(\epsilon\)-entropy of convex sets and functions, Siberian Mathematical Journal 17, 393-398. · Zbl 0354.54026
[5] Chichignoud M. (2010) Performances statistiques d’estimateurs non-linéaires, Thèse de Doctorat, Université de Provence U.F.R. M.I.M., available at .
[6] Cuevas A. (2009) Set estimation: Another bridge between statistics and geometry, Boletín de Estadística e Investigación Operativa, Vol. 25, No. 2, pp. 71-85.
[7] Cuevas A., Fraiman R. (2010) Set estimation, in New Perspectives on Stochastic Geometry, W.S. Kendall and I. Molchanov, eds., pp. 374-397 Oxford University Press. · Zbl 1192.62164
[8] Cuevas A., Rodríguez-Casal A. (2004). On boundary estimation. Adv. in Appl. Probab. 36, pp. 340-354. · Zbl 1045.62019
[9] Dudley R. M. (1974) Metric Entropy of Some Classes of Sets with Differentiable Boundaries, Journal of Approximation Theory 10, 227-236. · Zbl 0275.41011
[10] Efron B. (1965) The Convex Hull of a Random Set of Points, Biometrika, Vol. 52, No 3/4, pp. 331-343. · Zbl 0138.41301
[11] Gordon Y., Meyer M., Reisner, S. (1995) Constructing a Polytope to Approximate a Convex Body, Geometricae Dedicata 57: 217-222, 1995. · Zbl 0838.52003
[12] Guntuboyina A. (2011) Lower bounds for the minimax risk using f-divergences, and applications. IEEE Transactions on Information Theory, vol. 57, pages 2386-2399 · Zbl 1366.94143
[13] Ibragimov I. A., Khasminiskii R. Z. (1984) Statistical Estimation: Asymptotic Theory, New York: Springer-Verlag.
[14] Janson S. (1987) Maximal spacings in several dimensions, The Annals of Probability, Vol. 15, No. 1, pp. 274-280. · Zbl 0626.60017
[15] Kendall W. S., Molchanov I. (2010) New Perspectives in Stochastic Geometry. Eds., Oxford University Press. · Zbl 1183.60001
[16] Kendall M. G., Moran P. A. P. (1963) Geometrical Probability, Griffin’s Statistical Monographs and Courses, no.10. · Zbl 0105.35002
[17] Kolmogorov A. N., Tikhomirov V. M. (1959) \(\varepsilon\)-entropy and \(\varepsilon\)-capacity of sets in function spaces, Uspekhi Mat. Nauk, 14:2(86), 3-86 (in Russian). · Zbl 0090.33503
[18] Korostelev A. P., Tsybakov A. B. (1992) Asymptotically minimax image reconstruction problems. In Topics in Nonparametric Estimation (R. Z. Khasminskii, ed.) 45-86. Amer. Math. Soc., Providence, RI. · Zbl 0801.62041
[19] Korostelev A. P., Tsybakov A. B. (1993) Minimax Theory of Image Reconstruction. Lecture Notes in Statistics, v.82. Springer, NY e.a. · Zbl 0833.62039
[20] Korostelev A. P., Tsybakov A. B. (1994) Asymptotic efficiency in estimation of a convex set (in russian), Problems of Information Transmission, v.30, n.4, 317-327. · Zbl 0926.94007
[21] Lepski O. V. (1991) Asymptotically minimax adaptive estimation i. upper bounds. optimally adaptive estimates. Theory Probab. Appl., 36:682-697. · Zbl 0776.62039
[22] Mammen E., Tsybakov A. (1995) Asymptotical Minimax Recovery of Sets with Smooth Boundaries, The Annals of Statistics, Vol. 23, No. 2, pp. 502-524. · Zbl 0834.62038
[23] McClure D. E., Vitale R. A. (1975) Polygonal Approximation of Plane Convex Bodies, Journal of Mathematical Analysis and Applications, Vol. 51, No.2. · Zbl 0315.52004
[24] Pateiro-López B. (2008) Set estimation under convexity type restrictions, PhD thesis, available at . · Zbl 1416.62201
[25] Reisner S., Schütt C., Werner E. (2001) Dropping a vertex or a facet from a convex polytope, Forum Math., 359-378. · Zbl 0980.52002
[26] Rényi A., Sulanke R. (1963) Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. Z.Wahrscheinlichkeitsth. Verw. Geb. 2 pp. 75-84. · Zbl 0118.13701
[27] Rényi A., Sulanke R. (1964) Über die konvexe Hülle von \(n\) zufällig gewählten Punkten. II, Z.Wahrscheinlichkeitsth. Verw. Geb. 3 pp. 138-147. · Zbl 0126.34103
[28] Tsybakov A. B. (2009) Introduction to nonparametric estimation, Springer. · Zbl 1176.62032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.