zbMATH — the first resource for mathematics

Graphical representations for Ising and Potts models in general external fields. (English) Zbl 1336.82001
Summary: This work is concerned with the theory of graphical representation for the Ising and Potts models over general lattices with non-translation invariant external field. We explicitly describe in terms of the random-cluster representation the distribution function and, consequently, the expected value of a single spin for the Ising and \(q\)-state Potts models with general external fields. We also consider the Gibbs states for the Edwards-Sokal representation of the Potts model with non-translation invariant magnetic field and prove a version of the FKG inequality for the so called general random-cluster model (GRC model) with free and wired boundary conditions in the non-translation invariant case. Adding the amenability hypothesis on the lattice, we obtain the uniqueness of the infinite connected component and the almost sure quasilocality of the Gibbs measures for the GRC model with such general magnetic fields. As a final application of the theory developed, we show the uniqueness of the Gibbs measures for the ferromagnetic Ising model with a positive power-law decay magnetic field with small enough power, as conjectured in [R. Bissacot et al., Commun. Math. Phys. 337, No. 1, 41–53 (2015; Zbl 1326.82008)].

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82D40 Statistical mechanical studies of magnetic materials
Full Text: DOI arXiv
[1] Aizenman, M, Translation invariance and instability of phase coexistence in the two-dimensional Ising system, Commun. Math. Phys., 73, 83-94, (1980)
[2] Aizenman, M; Barsky, DJ; Fernández, R, The phase transition in a general class of Ising-type models is sharp, J. Stat. Phys., 47, 343-374, (1987)
[3] Aizenman, M; Chayes, JT; Chayes, L; Newman, C, Discontinuity of the magnetization in one-dimensional \(1/|x-y|^2\) Ising and Potts models, J. Stat. Phys., 50, 1-40, (1988) · Zbl 1084.82514
[4] Basuev, AG, Ising model in half-space: a series of phase transitions in low magnetic fields, Theor. Math. Phys., 153, 1539-1574, (2007) · Zbl 1139.82309
[5] Beffara, V; Duminil-Copin, H, The self-dual point of the two-dimensional random-cluster model is critical for \(q⩾ 1\), Probab. Theory Relat. Fields, 153, 511-542, (2012) · Zbl 1257.82014
[6] Benjamini, I., Schramm, O.: Percolation beyond \({\mathbb{Z}}^d\), many questions and a few answers. In: Selected Works of Oded Schramm, Selected Works in Probability and Statistics, vol. 1, 2, pp. 679-690. Springer, New York (2011) · Zbl 0890.60091
[7] Biskup, M; Borgs, C; Chayes, TJ; Kotecký, R, Gibbs states of graphical representations of the Potts model with external fields, J. Math. Phys., 41, 1170-1210, (2000) · Zbl 0977.82012
[8] Bissacot, R; Cioletti, L, Phase transition in ferromagnetic Ising models with non-uniform external magnetic fields, J. Stat. Phys., 139, 769-778, (2010) · Zbl 1197.82038
[9] Bissacot, R; Cassandro, M; Cioletti, L; Presutti, E, Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields, Commun. Math. Phys., 337, 41-53, (2015) · Zbl 1326.82008
[10] Borgs, C; Chayes, JT, The covariance matrix of the Potts model: a random-cluster analysis, J. Stat. Phys., 82, 1235-1297, (1996) · Zbl 1042.82510
[11] Borgs, C; Kotecký, R; Medved́, I, Finite-size effects for the Potts model with weak boundary conditions, J. Stat. Phys., 109, 67-131, (2002) · Zbl 1027.82008
[12] Burton, RM; Keane, M, Density and uniqueness in percolation, Commun. Math. Phys., 121, 501-505, (1989) · Zbl 0662.60113
[13] Černý, J; Kotecký, R, Interfaces for random-cluster models, J. Stat. Phys., 111, 73-106, (2003) · Zbl 1046.60092
[14] Coquille, L; Velenik, Y, A finite-volume version of aizenman-higuchi theorem for the 2D Ising model, Probab. Theory Relat. Fields, 153, 25-44, (2012) · Zbl 1246.82013
[15] Coquille, L; Duminil-Copin, H; Ioffe, D; Velenik, Y, On the Gibbs states of the noncritical Potts model on \(\mathbb{Z}^2\), Probab. Theory Relat. Fields, 158, 477-512, (2014) · Zbl 1288.82008
[16] Chayes, L; Machta, J; Redner, O, Graphical representations for Ising systems in external fields, J. Stat. Phys., 93, 17-32, (1998) · Zbl 0963.82009
[17] Duminil-Copin, H.: Geometric Representations of Lattice Spin Models. Spartacus Graduate, Cours Peccot, Collège de France (2015)
[18] Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Preprint arXiv:1502.03050 (2015) · Zbl 1342.82026
[19] Edwards, RG; Sokal, AD, Generalization of the Fortuin-Kasteleyn-swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D., 38, 2009-2012, (1988)
[20] FernÁndez, R; Pfister, C-E, Global specifications and non-quasilocality of projections of Gibbs measures, Ann. Prob., 25, 1284-1315, (1997) · Zbl 0895.60096
[21] Fortuin, CM; Kasteleyn, PW, On the random-cluster model I. introduction and relation to other models, Physica, 57, 536-564, (1972)
[22] Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics, 2nd edn. Walter de Gruyter, Berlin (2011) · Zbl 1225.60001
[23] Georgii, H-O; Higuchi, Y, Percolation and number of phases in the two-dimensional Ising model, J. Math. Phys., 41, 1153-1169, (2000) · Zbl 1045.82500
[24] Georgii, H-O; Häggström, O; Maes, C, The random geometry of equilibrium phases, Phase Trans. Crit. Phenom., 18, 1-142, (2001)
[25] Gielis, G; Grimmett, G, Rigidity of the interface in percolation and random-cluster models, J. Stat. Phys., 109, 1-37, (2002) · Zbl 1025.82007
[26] Grimmett, G.: The Random-Cluster Model. Grundlehren der Mathematischen Wissenschaften, vol. 333. Springer-Verlag, Berlin (2006) · Zbl 1122.60087
[27] Grimmett, G.: Uniqueness and Multiplicity of Infinite Clusters. Dynamics & Stochastics, Series IMS Lecture Notes IMS Lecture Notes Monograph Series, vol. 48, pp. 24-36. Springer, Berlin (2006) · Zbl 1125.82005
[28] Häggström, O, Almost sure quasilocality fails for the random-cluster model on a tree, J. Stat. Phys., 84, 1351-1361, (1996) · Zbl 1081.82520
[29] Häggström, O, Random-cluster representations in the study of phase transitions, Markov Process. Relat. Fields, 4, 275-321, (1998) · Zbl 0922.60088
[30] Häggström, O; Jonasson, J, Uniqueness and non-uniqueness in percolation theory, Probab. Surv., 3, 289-344, (2006) · Zbl 1189.60175
[31] Higuchi, Y.: On the Absence of Non-translation Invariant Gibbs States for the Two-Dimensional Ising Model. Random Fields, Volume I, II (Esztergom, 1979), Volume 27 of Colloq. Math. Soc. Jnos Bolyai, pp. 517-534. North-Holland, Amsterdam (1981)
[32] Jonasson, J; Steif, JE, Amenability and phase transition in the Ising model, J. Theor. Probab., 12, 549-559, (1999) · Zbl 0940.60093
[33] Lee, TD; Yang, CN, Statistical theory of equations of state and phase transitions. II. lattice gas and Ising model, Phys. Rev., 87, 410-419, (1952) · Zbl 0048.43401
[34] Lieb, EH, A refinement of simon’s correlation inequality, Commun. Math. Phys., 77, 127-135, (1980)
[35] Nardi, FR; Olivieri, E; Zahradnik, M, On the Ising model with strongly anisotropic external field, J. Stat. Phys., 97, 87-144, (1999) · Zbl 0981.82004
[36] Navarrete, M.G., Pechersky, E., Yambartsev, A.: Phase Transition in Ferromagnetic Ising Model with a Cell-board External Field. Preprint, arXiv:1411.7739v2t (2015) · Zbl 1338.82011
[37] Pfister, C-E; Velde, KV, Almost sure quasilocality in the random-cluster model, J. Stat. Phys., 79, 765-774, (1995) · Zbl 1081.82528
[38] Simon, B, Correlation inequalities and the decay of correlations in ferromagnets, Commun. Math. Phys., 77, 111-126, (1980)
[39] Vila, R.: Cálculo Exato do Ponto Crítico de Modelos de Aglomerados Aleatórios \((q⩾ 1)\) sobre a rede bidimensional. UnB, Brasília (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.