zbMATH — the first resource for mathematics

Further explorations of Boyd’s conjectures and a conductor 21 elliptic curve. (English) Zbl 1337.11072
Let $$P_{a,c}(x,y)=a(x+1/x)+y+1/y+c$$. Writing $$yP_{a,c}(x,y)=(y-y_{+}(x))(y-y_{-}(x))$$, one can define $$m^{\pm}(P_{a,c})=m(y-y_{\pm})$$, so that the logarithmic Mahler measure $$m(P_{a,c})$$ is equal to $$m^{+}(P_{a,c})+m^{-}(P_{a,c})$$. For any real $$k$$ satisfying $$0<k<4$$ and $$a=\sqrt{(4+k)/(4-k)}$$, $$c=k/\sqrt{4-k}$$ the authors show that $$m(P_{1,k})=m^{-}(P_{a,c})-3m^{+}(P_{a,c})$$ (Theorem 2). They also prove that $$m^{-}(P_{\sqrt{7},3})=\frac{1}{2}L'(f_{21},0)+\frac{3}{8} \log 7$$ (Theorem 3). As a consequence they recover Boyd’s conjecture for $$k=3$$ by showing that $m(x+1/x+y+1/y+3)=2L'(E,0),$ where $$E$$ is the elliptic curve $$x+1/x+y+1/y+3=0$$ (Corollary 1).

MSC:
 11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure 11F67 Special values of automorphic $$L$$-series, periods of automorphic forms, cohomology, modular symbols 11G05 Elliptic curves over global fields 11G16 Elliptic and modular units 19F27 Étale cohomology, higher regulators, zeta and $$L$$-functions ($$K$$-theoretic aspects) 33C75 Elliptic integrals as hypergeometric functions 33E05 Elliptic functions and integrals
DLMF
Full Text:
References:
  Andrews G. E. , Askey R. Roy R. , Special functions (Cambridge University Press, Cambridge, 1999). · Zbl 0920.33001  DOI: 10.1007/BF01078419 · Zbl 0453.46007  Berndt B. C. , Ramanujan’s notebooks, Part IV (Springer, New York, 1994). · Zbl 0785.11001  Bloch S. J. , Higher regulators, algebraic K-theory, and zeta functions of elliptic Curves, CRM Monograph Series 11 (American Mathematical Society, Providence, RI, 2000). · Zbl 0958.19001  Bloch S. Grayson D. , ’ K 2 and L-functions of elliptic curves: computer calculations’, Applications of algebraic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colorado, 1983), Contemporary Mathematics 55 (American Mathematical Society, Providence, RI, 1986) 79–88.  DOI: 10.1080/10586458.1998.10504357 · Zbl 0932.11069  Brunault F. , ’Étude de la valeur en s=2 de la fonction L d’une courbe elliptique’, with an appendix by L. Merel, Thése, Université Paris 7 Denis-Diderot, 2005.  Brunault  DOI: 10.1007/BF02762264 · Zbl 0922.11040  DOI: 10.1090/S0894-0347-97-00228-2 · Zbl 0913.11027  DOI: 10.1142/S1793042110003174 · Zbl 1201.11098  Lalín M. N. , ’Mahler measure and elliptic curve $$L$$ -functions at $$s=3$$ ’, J. reine angew. Math. 709 (2015) 201–218. · Zbl 1330.11068  DOI: 10.2140/ant.2007.1.87 · Zbl 1172.11037  Mellit  Olver F. W. , Lozier D. W. , Boisvert R. F. Clark C. W. (eds), NIST handbook of mathematical functions (Cambridge University Press, New York, 2010). Online companion: Digital Library of Mathematical Functions, http://dlmf.nist.gov/ .  Rodriguez-Villegas F. , ’Modular Mahler measures I’, Topics in number theory (University Park, PA, 1997) Mathematics and its Applications 467 (Kluwer Academic Publishers, Dordrecht, 1999) 17–48.  Rodriguez-Villegas F. , ’Identities between Mahler measures’, Number theory for the millennium, III (A K Peters, Natick, MA, 2002) 223–229. · Zbl 1029.11054  DOI: 10.1112/S0010437X11007342 · Zbl 1260.11062  DOI: 10.1093/imrn/rns285 · Zbl 1378.11091  DOI: 10.1017/S0305004113000765 · Zbl 1386.11129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.