Huang, G.; Jansen, H. M.; Mandjes, M.; Spreij, P.; De Turck, K. Markov-modulated Ornstein-Uhlenbeck processes. (English) Zbl 1337.60191 Adv. Appl. Probab. 48, No. 1, 235-254 (2016). Summary: In this paper, we consider an Ornstein-Uhlenbeck (OU) process \((M(t))_{t \geq 0}\) whose parameters are determined by an external Markov process \((X(t))_{t \geq 0}\) on a finite state space \(\{1,\ldots, d\}\); this process is usually referred to as Markov-modulated Ornstein-Uhlenbeck. We use stochastic integration theory to determine explicit expressions for the mean and variance of \(M(t)\). Then we establish a system of partial differential equations (PDEs) for the Laplace transform of \(M(t)\) and the state \(X(t)\) of the background process, jointly for time epochs \(t = t_{1},\ldots, t_{K}\). Then we use this PDE to set up a recursion that yields all moments of \(M(t)\) and its stationary counterpart; we also find an expression for the covariance between \(M(t)\) and \(M(t + u)\). We then establish a functional central limit theorem for \(M(t)\) for the situation that certain parameters of the underlying OU processes are scaled, in combination with the modulating Markov process being accelerated; interestingly, specific scalings lead to drastically different limiting processes. We conclude the paper by considering the situation of a single Markov process modulating multiple OU processes. Cited in 11 Documents MSC: 60J60 Diffusion processes 60J27 Continuous-time Markov processes on discrete state spaces 60F17 Functional limit theorems; invariance principles 60F05 Central limit and other weak theorems 60G44 Martingales with continuous parameter 60G15 Gaussian processes Keywords:Ornstein-Uhlenbeck processes; Markov modulation; regime switching; functional central limit theorem; martingale techniques PDF BibTeX XML Cite \textit{G. Huang} et al., Adv. Appl. Probab. 48, No. 1, 235--254 (2016; Zbl 1337.60191) Full Text: DOI arXiv Euclid OpenURL References: [1] Alili, L., Patie, P. and Pedersen, J. L. (2005). Representations of the first hitting time density of an Ornstein-Uhlenbeck process. Stoch. Models 21 , 967-980. · Zbl 1083.60064 [2] Anderson, D., Blom, J., Mandjes, M., Thorsdottir, H. and De Turck, K. (2014). A functional central limit theorem for a Markov-modulated infinite-server queue. To appear in Methodology Comput. Appl. Prob. . · Zbl 1336.60066 [3] Ang, A. and Bekaert, G. (2002). Regime switches in interest rates. J. Business Econom. Statist. 20 , 163-182. [4] Asmussen, S. (2003). Applied Probability and Queues , 2nd edn. Springer, New York. · Zbl 1029.60001 [5] Asmussen, S. and Albrecher, H. (2010). Ruin Probabilities , 2nd edn. World Scientific, Hackensack, NJ. · Zbl 1247.91080 [6] Banachewicz, K., Lucas, A. and van der Vaart, A. (2008). Modelling portfolio defaults using hidden Markov models with covariates. Econometrics J. 11 , 155-171. · Zbl 1135.91358 [7] Blom, J. and Mandjes, M. (2013). A large-deviations analysis of Markov-modulated inifinite-server queues. Operat. Res. Lett. 41 , 220-225. · Zbl 1286.90028 [8] Blom, J., De Turck, K. and Mandjes, M. (2013). Rare event analysis of Markov-modulated infinite-server queues: a Poisson limit. Stoch. Models 29 , 463-474. · Zbl 1284.60159 [9] Blom, J., De Turck, K. and Mandjes, M. (2015). Analysis of Markov-modulated infinite-server queues in the central-limit regime. Prob. Eng. Inf. Sci. 29 , 433-459. · Zbl 1370.60160 [10] Blom, J., Mandjes, M. and Thorsdottir, H. (2013). Time-scaling limits for Markov-modulated infinite-server queues. Stoch. Models 29 , 112-127. · Zbl 1271.60096 [11] Blom, J., De Turck, K., Kella, O. and Mandjes, M. (2014). Tail asymptotics of a Markov-modulated infinite-server queue. Queueing Systems 78 , 337-357. · Zbl 1307.60125 [12] Blom, J., Kella, O., Mandjes, M. and Thorsdottir, H. (2014). Markov-modulated infinite-server queues with general service times. Queueing Systems 76 , 403-424. · Zbl 1307.60126 [13] Coolen-Schrijner, P. and van Doorn, E. A. (2002). The deviation matrix of a continuous-time Markov chain. Prob. Eng. Inf. Sci. 16 , 351-366. · Zbl 1011.60057 [14] D’Auria, B. (2008). M/M/\(\infty\) queues in semi-Markovian random environment. Queueing Systems 58 , 221-237. · Zbl 1140.60343 [15] Elliott, R. J. and Mamon, R. S. (2002). An interest rate model with a Markovian mean reverting level. Quant. Finance 2 , 454-458. [16] Elliott, R. J. and Siu, T. K. (2009). On Markov-modulated exponential-affine bond price formulae. Appl. Math. Finance 16 , 1-15. · Zbl 1169.91342 [17] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence. John Wiley, New York. · Zbl 0592.60049 [18] Fralix, B. H. and Adan, I. J. B. F. (2009). An infinite-server queue influenced by a semi-Markovian environment. Queueing Systems 61 , 65-84. · Zbl 1156.90330 [19] Giampieri, G., Davis, M. and Crowder, M. (2005). Analysis of default data using hidden Markov models. Quant. Finance 5 , 27-34. · Zbl 1118.91321 [20] Guyon, X., Iovleff, S. and Yao, J.-F. (2004). Linear diffusion with stationary switching regime. ESAIM Prob. Statist. 8 , 25-35. · Zbl 1033.60084 [21] Hale, J. K. (1980). Ordinary Differential Equations , 2nd edn. Krieger, Huntington, New York. · Zbl 0433.34003 [22] Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57 , 357-384. · Zbl 0685.62092 [23] Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis . Cambridge University Press. · Zbl 0576.15001 [24] Huang, G., Mandjes, M. and Spreij, P. (2014). Weak convergence of Markov-modulated diffusion processes with rapid switching. Statist. Prob. Lett. 86 , 74-79. · Zbl 1293.60076 [25] Huang, G. \et (2014). Markov-modulated Ornstein-Uhlenbeck processes. Preprint. Available at http://arxiv. org/abs/1412.7952v1. [26] Jacobsen, M. (1996). Laplace and the origin of the Ornstein-Uhlenbeck process. Bernoulli 2 , 271-286. · Zbl 0965.60067 [27] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes , 2nd edn. Springer, Berlin. · Zbl 1018.60002 [28] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus , 2nd edn. Springer, New York. · Zbl 0734.60060 [29] Keilson, J. (1979). Markov Chain Models–Rarity and Exponentiality . Springer, New York. · Zbl 0411.60068 [30] Kemeny, J. G. and Snell, J. L. (1960). Finite Markov Chains. Van Nostrand, Princeton, NJ. · Zbl 0089.13704 [31] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach. John Hopkins University Press, Baltimore, MD. · Zbl 0469.60002 [32] O’Cinneide, C. A. and Purdue, P. (1986). The M/M/\(\infty\) queue in a random environment. J. Appl. Prob. 23 , 175-184. · Zbl 0589.60076 [33] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd edn. Springer, Berlin. · Zbl 0917.60006 [34] Robert, P. (2003). Stochastic Networks and Queues. Springer, Berlin. · Zbl 1038.60091 [35] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales, Vol. 2, Itô Calculus , 2nd edn. Cambridge University Press. · Zbl 0977.60005 [36] Syski, R. (1978). Ergodic potential. Stoch. Process. Appl. 7 , 311-336. · Zbl 0385.60062 [37] Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of Brownian motion. Phys. Rev. 36 , 823-841. · JFM 56.1277.03 [38] Williams, D. (1991). Probability with Martingales . Cambridge University Press. · Zbl 0722.60001 [39] Xing, X., Zhang, W. and Wang, Y. (2009). The stationary distributions of two classes of reflected Ornstein-Uhlenbeck processes. J. Appl. Prob. 46 , 709-720. · Zbl 1196.60158 [40] Yuan, C. and Mao, X. (2003). Asymptotic stability in distribution of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 103 , 277-291. · Zbl 1075.60541 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.