×

Sharp ellipticity conditions for ballistic behavior of random walks in random environment. (English) Zbl 1337.60249

Authors’ abstract: We sharpen ellipticity criteria for random walks in i.i.d. random environments introduced by D. Campos and A. F. Ramírez [Probab. Theory Relat. Fields 160, No. 1–2, 189–251 (2014; Zbl 1306.60151)] which ensure ballistic behavior. Furthermore, we construct new examples of random environments for which the walk satisfies the polynomial ballisticity criteria of N. Berger et al. [Commun. Pure Appl. Math. 67, No. 12, 1947–1973 (2014; Zbl 1364.60140)]. As a corollary, we can exhibit a new range of values for the parameters of Dirichlet random environments in dimension \(d=2\) under which the corresponding random walk is ballistic.

MSC:

60K37 Processes in random environments
60G50 Sums of independent random variables; random walks
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Berger, N., Drewitz, A. and Ramírez, A.F. (2014). Effective polynomial ballisticity conditions for random walk in random environment. Comm. Pure Appl. Math. 67 1947-1973. · Zbl 1364.60140
[2] Bouchet, É. (2013). Sub-ballistic random walk in Dirichlet environment. Electron. J. Probab. 18 no. 58, 25. · Zbl 1296.60267
[3] Campos, D. and Ramírez, A.F. (2014). Ellipticity criteria for ballistic behavior of random walks in random environment. Probab. Theory Related Fields 160 189-251. · Zbl 1306.60151
[4] Enriquez, N. and Sabot, C. (2002). Edge oriented reinforced random walks and RWRE. C. R. Math. Acad. Sci. Paris 335 941-946. · Zbl 1016.60051
[5] Enriquez, N. and Sabot, C. (2006). Random walks in a Dirichlet environment. Electron. J. Probab. 11 802-817 (electronic). · Zbl 1109.60087
[6] Lyons, R. and Peres, Y. (2015). Probabilities on Trees and Networks . Cambridge: Cambridge Univ. Press. To appear. Available at . · Zbl 1346.60061
[7] Pemantle, R. (1988). Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 16 1229-1241. · Zbl 0648.60077
[8] Rassoul-Agha, F. and Seppäläinen, T. (2009). Almost sure functional central limit theorem for ballistic random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 45 373-420. · Zbl 1176.60087
[9] Sabot, C. (2013). Random Dirichlet environment viewed from the particle in dimension \(d\geq3\). Ann. Probab. 41 722-743. · Zbl 1269.60077
[10] Sabot, C. and Tournier, L. (2011). Reversed Dirichlet environment and directional transience of random walks in Dirichlet environment. Ann. Inst. Henri Poincaré Probab. Stat. 47 1-8. · Zbl 1209.60055
[11] Simenhaus, F. (2007). Asymptotic direction for random walks in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 43 751-761. · Zbl 1172.60337
[12] Sznitman, A.-S. (2000). Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. ( JEMS ) 2 93-143. · Zbl 0976.60097
[13] Sznitman, A.-S. (2001). On a class of transient random walks in random environment. Ann. Probab. 29 724-765. · Zbl 1017.60106
[14] Sznitman, A.-S. and Zerner, M. (1999). A law of large numbers for random walks in random environment. Ann. Probab. 27 1851-1869. · Zbl 0965.60100
[15] Tournier, L. (2015). Asymptotic direction of random walks in Dirichlet environment. Ann. Inst. Henri Poincaré Probab. Stat. · Zbl 1319.60095
[16] Tournier, L. (2009). Integrability of exit times and ballisticity for random walks in Dirichlet environment. Electron. J. Probab. 14 431-451. · Zbl 1192.60113
[17] Wilks, S.S. (1962). Mathematical Statistics. A Wiley Publication in Mathematical Statistics . New York: Wiley. · Zbl 0173.45805
[18] Zerner, M.P.W. (2002). A non-ballistic law of large numbers for random walks in i.i.d. random environment. Electron. Commun. Probab. 7 191-197 (electronic). · Zbl 1008.60107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.