Dette, Holger; Hallin, Marc; Kley, Tobias; Volgushev, Stanislav Of copulas, quantiles, ranks and spectra: an \(L_{1}\)-approach to spectral analysis. (English) Zbl 1337.62286 Bernoulli 21, No. 2, 781-831 (2015). The authors introduce an alternative method for spectral analysis of univariate stationary time series. The spectral analysis is based on two spectral kernel densities: Laplace and copula. According to these spectral kernel densities, estimation is based on Laplace and copula periodograms. Asymptotic properties of Laplace and copula periodogram kernels are introduced and discussed in Section 3. Smoothed versions of the introduced periodograms are considered in Section 4. In the last section, the authors provide some simulation studies to illustrate properties of the earlier obtained estimators. Reviewer: Miroslav M. Ristić (Niš) Cited in 3 ReviewsCited in 24 Documents MSC: 62M15 Inference from stochastic processes and spectral analysis 62H05 Characterization and structure theory for multivariate probability distributions; copulas 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) Keywords:copulas; periodogram; quantile regression; ranks; spectral analysis; time reversibility; time series Software:quantilogram PDFBibTeX XMLCite \textit{H. Dette} et al., Bernoulli 21, No. 2, 781--831 (2015; Zbl 1337.62286) Full Text: DOI arXiv Euclid References: [1] Abhyankar, A., Copeland, L.S. and Wong, W. (1997). Uncovering nonlinear structure in real-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100. J. Bus. Econom. Statist. 15 1-14. [2] Bedford, T. and Cooke, R.M. (2002). Vines - a new graphical model for dependent random variables. Ann. Statist. 30 1031-1068. · Zbl 1101.62339 · doi:10.1214/aos/1031689016 [3] Berg, A., Paparoditis, E. and Politis, D.N. (2010). A bootstrap test for time series linearity. J. Statist. Plann. Inference 140 3841-3857. · Zbl 1327.62460 · doi:10.1016/j.jspi.2010.04.047 [4] Bloomfield, P. (1976). Fourier Analysis of Time Series : An Introduction. Wiley Series in Probability and Mathematical Statistics . New York: Wiley. · Zbl 0353.62051 [5] Boussama, F. (1998). Ergodicité, mélange et estimation dans le modelés GARCH. Ph.D. thesis, Université 7 Paris. [6] Breidt, F.J., Davis, R.A. and Trindade, A.A. (2001). Least absolute deviation estimation for all-pass time series models. Ann. Statist. 29 919-946. · Zbl 1012.62094 [7] Brillinger, D.R. (1975). Time Series. Data Analysis and Theory. International Series in Decision Processes . New York: Holt, Rinehart and Winston. · Zbl 0321.62004 [8] Brock, W.A., Hsieh, D.A. and LeBaron, B. (1992). Nonlinear Dynamics , Chaos , and Instability : Statistical Theory and Economic Evidence , 2nd ed. Cambridge, MA: MIT Press. [9] Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18 17-39. · Zbl 1181.62125 · doi:10.1017/S0266466602181023 [10] Chung, J. and Hong, Y. (2007). Model-free evaluation of directional predictability in foreign exchange markets. J. Appl. Econometrics 22 855-889. · doi:10.1002/jae.965 [11] Domma, F., Giordano, S. and Perri, P.F. (2009). Statistical modeling of temporal dependence in financial data via a copula function. Comm. Statist. Simulation Comput. 38 703-728. · Zbl 1290.62096 · doi:10.1080/03610910802645321 [12] Francq, C. and Zakoïan, J.-M. (2005). A central limit theorem for mixing triangular arrays of variables whose dependence is allowed to grow with the sample size. Econometric Theory 21 1165-1171. · Zbl 1083.62076 · doi:10.1017/S0266466605050577 [13] Francq, C. and Zakoïan, J.-M. (2006). Mixing properties of a general class of \(\operatorname{GARCH}(1,1)\) models without moment assumptions on the observed process. Econometric Theory 22 815-834. · Zbl 1100.62083 · doi:10.1017/S0266466606060373 [14] Genest, C. and Favre, A.C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering 12 347-368. [15] Genest, C. and Segers, J. (2010). On the covariance of the asymptotic empirical copula process. J. Multivariate Anal. 101 1837-1845. · Zbl 1211.62030 · doi:10.1016/j.jmva.2010.03.018 [16] Granger, C.W.J. (1964). Spectral Analysis of Economic Time Series. In Association with M. Hatanaka. Princeton Studies in Mathematical Economics , No. I . Princeton, NJ: Princeton Univ. Press. · Zbl 0128.14701 [17] Hagemann, A. (2011). Robust spectral analysis. arXiv e-prints, . arXiv:1111.1965v1 [18] Hinich, M.J. and Patterson, D.M. (1985). Evidence of Nonlinearity in daily stock returns. J. Bus. Econom. Statist. 3 69-77. [19] Hinich, M. J. and Patterson, D. M. (1990). Evidence of Nonlinearity in the Trade-by-Trade Stock Market Return Generating Process. In Economic Complexity : Chaos , Sunspots , Bubbles and Nonlinearity ; Proceedings of the 4 th International Symposium in Economic Theory and Econometrics 383-409. Cambridge: Cambridge Univ. Press. · Zbl 0735.90030 [20] Hong, Y. (1999). Hypothesis testing in time series via the empirical characteristic function: A generalized spectral density approach. J. Amer. Statist. Assoc. 94 1201-1220. · Zbl 1072.62632 · doi:10.2307/2669935 [21] Hong, Y. (2000). Generalized spectral tests for serial dependence. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 557-574. · Zbl 0963.62043 · doi:10.1111/1467-9868.00250 [22] Hsieh, D.A. (1989). Testing for nonlinear dependence in daily foreign exchange rates. The Journal of Business 62 339-368. [23] Katkovnik, V. (1998). Robust M-periodogram. IEEE Trans. Signal Process. 46 3104-3109. [24] Kedem, B. (1980). Binary Time Series. Lecture Notes in Pure and Applied Mathematics 52 . New York: Dekker. · Zbl 0424.62062 [25] Knight, K. (1998). Limiting distributions for \(L_{1}\) regression estimators under general conditions. Ann. Statist. 26 755-770. · Zbl 0929.62021 · doi:10.1214/aos/1028144858 [26] Koenker, R. (2005). Quantile Regression. Econometric Society Monographs 38 . Cambridge: Cambridge Univ. Press. · Zbl 1111.62037 [27] Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. Econometrica 46 33-50. · Zbl 0373.62038 · doi:10.2307/1913643 [28] Koenker, R. and Xiao, Z. (2006). Quantile autoregression. J. Amer. Statist. Assoc. 101 980-990. · Zbl 1120.62326 · doi:10.1198/016214506000000672 [29] Lee, J. and Rao, S.S. (2011). The probabilistic spectral density. Personal communication. [30] Li, T.-H. (2008). Laplace periodogram for time series analysis. J. Amer. Statist. Assoc. 103 757-768. · Zbl 1471.62471 · doi:10.1198/016214508000000265 [31] Li, T.H. (2011). Quantile periodograms. Technical report, IBM, New York. · Zbl 1261.62082 · doi:10.1080/01621459.2012.682815 [32] Liebscher, E. (2005). Towards a unified approach for proving geometric ergodicity and mixing properties of nonlinear autoregressive processes. J. Time Ser. Anal. 26 669-689. · Zbl 1092.62091 · doi:10.1111/j.1467-9892.2005.00412.x [33] Linton, O. and Whang, Y.-J. (2007). The quantilogram: With an application to evaluating directional predictability. J. Econometrics 141 250-282. · Zbl 1418.62338 · doi:10.1016/j.jeconom.2007.01.004 [34] Mikosch, T. and Zhao, Y. (2014). A Fourier analysis of extreme events. Bernoulli 20 803-845. · Zbl 1321.60110 · doi:10.3150/13-BEJ507 [35] Nelsen, R.B. (2006). An Introduction to Copulas , 2nd ed. Springer Series in Statistics . New York: Springer. · Zbl 1152.62030 [36] Pollard, D. (1984). Convergence of Stochastic Processes. Springer Series in Statistics . New York: Springer. · Zbl 0544.60045 [37] Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory 7 186-199. · doi:10.1017/S0266466600004394 [38] Shorack, G.R. and Wellner, J.A. (1986). Empirical Processes with Applications to Statistics. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics . New York: Wiley. · Zbl 1170.62365 [39] Smith, M., Min, A., Almeida, C. and Czado, C. (2010). Modeling longitudinal data using a pair-copula decomposition of serial dependence. J. Amer. Statist. Assoc. 105 1467-1479. Supplementary materials available online. · Zbl 1388.62171 · doi:10.1198/jasa.2010.tm09572 [40] Vaidyanathan, R. and Krehbiel, T. (1992). Does the S&P 500 futures mispricing series exhibit nonlinear dependence across time? Journal of Futures Markets 12 659-677. [41] Wendler, M. (2011). U-processes, U-quantile processes and generalized linear statistics of dependent data. Available at . arXiv:1009.5337v4 · Zbl 1236.62041 · doi:10.1016/j.spa.2011.11.010 [42] Yu, B. (1994). Rates of convergence for empirical processes of stationary mixing sequences. Ann. Probab. 22 94-116. · Zbl 0802.60024 · doi:10.1214/aop/1176988849 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.