Bayraktar, Erhan; Li, Jiaqi Stochastic Perron for stochastic target games. (English) Zbl 1337.93100 Ann. Appl. Probab. 26, No. 2, 1082-1110 (2016). Summary: We extend the stochastic Perron method to analyze the framework of stochastic target games, in which one player tries to find a strategy such that the state process almost surely reaches a given target no matter which action is chosen by the other player. Within this framework, our method produces a viscosity sub-solution (super-solution) of a Hamilton-Jacobi-Bellman (HJB) equation. We then characterize the value function as a viscosity solution to the HJB equation using a comparison result and a byproduct to obtain the dynamic programming principle. Cited in 5 Documents MSC: 93E20 Optimal stochastic control 49L20 Dynamic programming in optimal control and differential games 49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games 60G46 Martingales and classical analysis 60H30 Applications of stochastic analysis (to PDEs, etc.) 91A25 Dynamic games Keywords:stochastic target problem; stochastic Perron method; viscosity solutions; geometric dynamic programming principle PDF BibTeX XML Cite \textit{E. Bayraktar} and \textit{J. Li}, Ann. Appl. Probab. 26, No. 2, 1082--1110 (2016; Zbl 1337.93100) Full Text: DOI arXiv Euclid OpenURL References: [1] Bayraktar, E., Cosso, A. and Pham, H. (2014). Robust feedback switching control: Dynamic programming and viscosity solutions. Available at . arXiv:1409.6233 · Zbl 1347.49042 [2] Bayraktar, E. and Huang, Y.-J. (2013). On the multidimensional controller-and-stopper games. SIAM J. Control Optim. 51 1263-1297. · Zbl 1268.49045 [3] Bayraktar, E. and Sîrbu, M. (2012). Stochastic Perron’s method and verification without smoothness using viscosity comparison: The linear case. Proc. Amer. Math. Soc. 140 3645-3654. · Zbl 1279.60056 [4] Bayraktar, E. and Sîrbu, M. (2013). Stochastic Perron’s method for Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 51 4274-4294. · Zbl 1285.49019 [5] Bayraktar, E. and Sîrbu, M. (2014). Stochastic Perron’s method and verification without smoothness using viscosity comparison: Obstacle problems and Dynkin games. Proc. Amer. Math. Soc. 142 1399-1412. · Zbl 1321.60080 [6] Bayraktar, E. and Zhang, Y. (2015). Stochastic Perron’s method for the probability of lifetime ruin problem under transaction costs. SIAM J. Control Optim. 53 91-113. · Zbl 1343.93094 [7] Bouchard, B., Moreau, L. and Nutz, M. (2014). Stochastic target games with controlled loss. Ann. Appl. Probab. 24 899-934. · Zbl 1290.49075 [8] Bouchard, B. and Nutz, M. (2015). Stochastic target games and dynamic programming via regularized viscosity solutions. Math. Oper. Res. To appear. Available at . arXiv:1307.5606 · Zbl 1334.93178 [9] Crandall, M. G., Ishii, H. and Lions, P.-L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. ( N.S. ) 27 1-67. · Zbl 0755.35015 [10] Pham, H. (2009). Continuous-Time Stochastic Control and Optimization with Financial Applications. Stochastic Modelling and Applied Probability 61 . Springer, Berlin. · Zbl 1165.93039 [11] Rokhlin, D. B. (2014). Stochastic Perron’s method for optimal control problems with state constraints. Electron. Commun. Probab. 19 1-15. · Zbl 1310.93085 [12] Rokhlin, D. B. (2014). Verification by stochastic Perron’s method in stochastic exit time control problems. J. Math. Anal. Appl. 419 433-446. · Zbl 1297.35209 [13] Sîrbu, M. (2014). A note on the strong formulation of stochastic control problems with model uncertainty. Electron. Commun. Probab. 19 1-10. · Zbl 1325.49025 [14] Sîrbu, M. (2014). Stochastic Perron’s method and elementary strategies for zero-sum differential games. SIAM J. Control Optim. 52 1693-1711. · Zbl 1409.91029 [15] Soner, H. M. and Touzi, N. (2002). Dynamic programming for stochastic target problems and geometric flows. J. Eur. Math. Soc. ( JEMS ) 4 201-236. · Zbl 1003.49003 [16] Soner, H. M. and Touzi, N. (2002). Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J. Control Optim. 41 404-424. · Zbl 1011.49019 [17] Touzi, N. (2013). Optimal Stochastic Control , Stochastic Target Problems , and Backward SDE. Fields Institute Monographs 29 . Springer, New York. · Zbl 1256.93008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.