Miyasita, Tosiya A dynamical system for a nonlocal parabolic equation with exponential nonlinearity. (English) Zbl 1338.35234 Rocky Mt. J. Math. 45, No. 6, 1897-1917 (2015). Author’s abstract: “We consider a nonlocal parabolic and the corresponding elliptic equation with exponential nonlinearity. At first, we study the set of a stationary solution and compute and compute its Morse index. Next, we obtain the time-global solution in the use of the Lyapunov function and define the dynamical system. Finally, we construct an exponential attractor by a squeezeng property.”The considered parabolic problem is one-dimensional of the following form \[ u_t=\Delta u +\frac{\lambda}{2}\left( \frac{e^u}{\int_I e^udx}-1\right) \; (x\in I=(0,1), t>0) \] with conditions \(u_x(0,t)=u_x(1,t)=0; u(x,0)=u_0(x); \int_Iu(x,t)dx=0\). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 35K55 Nonlinear parabolic equations 35J60 Nonlinear elliptic equations 37L25 Inertial manifolds and other invariant attracting sets of infinite-dimensional dissipative dynamical systems Keywords:parabolic equation; stationary elliptic equation; Morse index; Lyapunov function; exponential attractor; squeezing property PDF BibTeX XML Cite \textit{T. Miyasita}, Rocky Mt. J. Math. 45, No. 6, 1897--1917 (2015; Zbl 1338.35234) Full Text: DOI Euclid References: [1] S.B. Angenent, The Morse-Smale property for a semi-linear parabolic equation , J. Diff. Equat. 62 (1986), 427-442. · Zbl 0581.58026 [2] —-, The zeroset of a solution of a parabolic equation , J. reine angew. Math. 390 (1988), 79-96. [3] H. Brezis, Analyse fonctionnelle , Dunod, 1999. [4] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of \(-\Delta u = V(x) e^u\) in two dimensions , Comm. Partial Diff. Equat. 16 (1991), 1223-1253. · Zbl 0746.35006 [5] E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description , Comm. Math. Phys. 143 (1992), 501-525. · Zbl 0745.76001 [6] —-, A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description , II, Comm. Math. Phys. 174 (1995), 229-260. · Zbl 0840.76002 [7] C.-C. Chen and C.-S. Lin, On the symmetry of blowup solutions to a mean field equation , Ann. Inst. H. Poincaré Anal. Non Lin. 18 (2001), 271-296. · Zbl 0995.35004 [8] M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues , J. Funct. Anal. 8 (1971), 321-340. · Zbl 0219.46015 [9] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations , John-Wiley and Sons, New-York, 1994. · Zbl 0842.58056 [10] M. Fila and H. Matano, Connecting equilibria by blow-up solutions , Discr. Contin. Dynam. Syst. 6 (2000), 155-164. · Zbl 1157.35404 [11] M. Fila, H. Matano and P. Poláčik, Existence of \(L^1\)-connections between equilibria of a semilinear parabolic equation , J. Dyn. Diff. Equat. 14 (2002), 463-491. · Zbl 1001.35054 [12] M. Fila and P. Poláčik, Global solutions of a semilinear parabolic equation , Adv. Diff. Equat. 4 (1999), 163-196. · Zbl 0953.35065 [13] I.M. Gel’fand, Some problems in the theory of quasilinear equations , Amer. Math. Soc. Trans. 29 (1963), 295-381. · Zbl 0127.04901 [14] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximal priciple , Comm. Math. Phys. 68 (1979), 209-243. · Zbl 0425.35020 [15] J.K. Hale, Asymptotic behavior of dissipative systems , Math. Surv. Mono. 25 , American Mathematical Society, Providence, RI, 1988. · Zbl 0642.58013 [16] D. Henry, Geometric theory of semilinear parabolic equations , Lect. Notes Math. 840 , Springer-Verlag, New York, 1981. · Zbl 0456.35001 [17] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources , Arch. Rat. Mech. Anal. 49 (1972/73), 241-269. · Zbl 0266.34021 [18] T. Kato, Perturbation theory for linear operators , Springer-Verlag, New York, 1966. · Zbl 0148.12601 [19] M.K.H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction , Comm. Pure Appl. Math. 46 (1993), 229-260. · Zbl 0811.76002 [20] Y.Y. Li, Harnack type inequality : The method of moving planes , Comm. Math. Phys. 200 (1999), 421-444. · Zbl 0928.35057 [21] Y.Y. Li and I. Shafrir, Blow-up analysis for solutions of \(-\Delta u = V e^u\) in dimension two , Indiana Univ. Math. Journal 43 (1994), 1255-1270. · Zbl 0842.35011 [22] C.-S. Lin, Topological degree for the mean field equation on \(S^2\) , Duke Math. Journal 104 (2000), 501-536. · Zbl 0964.35038 [23] H. Matano, Nonincrease of the lap-number of a solution for a one-dimensinal semilinear parabolic equation , J. Fac. Sci. Univ. Tokyo Math. 29 (1982), 401-441. · Zbl 0496.35011 [24] T. Miyasita, Non-local elliptic problem in higher dimension , Osaka J. Math. 44 (2007), 159-172. · Zbl 1213.35229 [25] —-, On the dynamical system of a parabolic equation with non-local term , Adv. Stud. Pure Math. 47 , Math. Soc. Japan, Tokyo, 2007. · Zbl 1141.35404 [26] T. Miyasita and T. Suzuki, Non-local Gel’fand problem in higher dimensions , Banach Center Publ. 66 , Polish Acad. Sci., Warsaw, 2004. · Zbl 1235.35119 [27] J. Moser, A sharp form of an inequality by N.Trudinger , Indiana Univ. Math. Journal 20 (1970/71), 1077-1091. [28] M. Nolasco and G. Tarantello, On a sharp Sobolev-type inequality on two-dimensional compact manifolds , Arch. Rat. Mech. Anal. 145 (1998), 161-195. · Zbl 0980.46022 [29] K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations , Nonlin. Anal. 51 (2002), 119-144. · Zbl 1005.35023 [30] T. Ricciardi and G. Tarantello, On a periodic boundary value problem with exponential nonlinearities , Diff. Int. Equat. 11 (1998), 745-753. · Zbl 1015.34008 [31] J. Spruck and Y. Yang, Topological solutions in the self-dual Chern-Simons gauge theory: existence and approximation , Ann. Inst. H. Poin. Anal. Non Lin. 12 (1995), 75-97. · Zbl 0836.35007 [32] M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory , Boll. Un. Mat. Ital. Mat. 1 (1998), 109-121. · Zbl 0912.58046 [33] T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity , Ann. Inst. Poin. Anal. Non Lin. 9 (1992), 367-398. · Zbl 0785.35045 [34] G. Tarantello, Multiple condensate solutions for the Chern-Simons-Higgs theory , J. Math. Phys. 37 (1996), 3769-3796. · Zbl 0863.58081 [35] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics , Appl. Math. Sci. 68 , Springer-Verlag, New York, 1997. · Zbl 0871.35001 [36] S. Zheng, Nonlinear parabolic equations and hyperbolic-parabolic coupled systems , Pitman Mono. Surv. Pure Appl. Math. 76 , John Wiley & Sons, Inc., New York, 1995. · Zbl 0835.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.