zbMATH — the first resource for mathematics

Fractional Laplacian equations with critical Sobolev exponent. (English) Zbl 1338.35481
The paper under review extends in a fractional setting some results concerning the existence of nontrivial solutions for a class of nonlocal elliptic Dirichlet problems involving critical nonlinear terms. The basic analytic tool to establish the existence of a nontrivial solution is the linking method. The linking geometry is stated in relationship with the value of the parameter and the eigenvalues of the operator. This relation also establishes an energy criterion for the associated functional and the best constant in the fractional Sobolev embedding in order to use compactness of the Palais-Smale sequence.

35R11 Fractional partial differential equations
35R09 Integral partial differential equations
35A15 Variational methods applied to PDEs
35S15 Boundary value problems for PDEs with pseudodifferential operators
47G20 Integro-differential operators
45G05 Singular nonlinear integral equations
Full Text: DOI
[1] Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems. In: Cambridge Studies in Advanced Mathematics, vol. 104 Cambridge University Press, Cambridge (2007) · Zbl 1125.47052
[2] Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349-381 (1973) · Zbl 0273.49063
[3] Ambrosetti, A; Struwe, M, A note on the problem \(-Δ u=λ u+ u|u|^{2^*-2}\), Manuscr. Math., 54, 373-379, (1986) · Zbl 0596.35043
[4] Barrios, B; Colorado, E; Pablo, A; Sanchez, U, On some critical problems for the fractional Laplacian operator, J. Differ. Equ., 252, 6133-6162, (2012) · Zbl 1245.35034
[5] Brezis, H.: Analyse fonctionelle. Théorie et applications. Masson, Paris (1983)
[6] Brezis, H; Coron, JM; Nirenberg, L, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Commun. Pure Appl. Math., 33, 667-684, (1980) · Zbl 0484.35057
[7] Brezis, H; Lieb, E, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., 88, 486-490, (1983) · Zbl 0526.46037
[8] Brezis, H; Nirenberg, L, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36, 437-477, (1983) · Zbl 0541.35029
[9] Capozzi, A; Fortunato, D; Palmieri, G, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2, 463-470, (1985) · Zbl 0612.35053
[10] Nezza, E; Palatucci, G; Valdinoci, E, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573, (2012) · Zbl 1252.46023
[11] Fiscella, A; Servadei, R; Valdinoci, E, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40, 235-253, (2015) · Zbl 1346.46025
[12] Gazzola, F; Ruf, B, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Differ. Equ., 2, 555-572, (1997) · Zbl 1023.35508
[13] Rabinowitz, PH, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 215-223, (1978) · Zbl 0375.35026
[14] Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Reg. Conf. Ser. Math., vol. 65. American Mathematical Society, Providence (1986) · Zbl 0609.58002
[15] Servadei, R, The Yamabe equation in a non-local setting, Adv. Nonlinear Anal., 2, 235-270, (2013) · Zbl 1273.49011
[16] Servadei, R; Valdinoci, E, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Iberoam., 29, 1091-1126, (2013) · Zbl 1275.49016
[17] Servadei, R; Valdinoci, E, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389, 887-898, (2012) · Zbl 1234.35291
[18] Servadei, R; Valdinoci, E, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33, 2105-2137, (2013) · Zbl 1303.35121
[19] Servadei, R; Valdinoci, E, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Am. Math. Soc., 367, 67-102, (2015) · Zbl 1323.35202
[20] Servadei, R; Valdinoci, E, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12, 2445-2464, (2013) · Zbl 1302.35413
[21] Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Springer, Berlin (1990) · Zbl 0746.49010
[22] Tan, J, The Brezis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differ. Equ., 36, 21-41, (2011) · Zbl 1248.35078
[23] Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996) · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.