×

zbMATH — the first resource for mathematics

Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. (English) Zbl 1338.62089
Summary: We consider challenges that arise in the estimation of the mean outcome under an optimal individualized treatment strategy defined as the treatment rule that maximizes the population mean outcome, where the candidate treatment rules are restricted to depend on baseline covariates. We prove a necessary and sufficient condition for the pathwise differentiability of the optimal value, a key condition needed to develop a regular and asymptotically linear (RAL) estimator of the optimal value. The stated condition is slightly more general than the previous condition implied in the literature. We then describe an approach to obtain root-\(n\) rate confidence intervals for the optimal value even when the parameter is not pathwise differentiable. We provide conditions under which our estimator is RAL and asymptotically efficient when the mean outcome is pathwise differentiable. We also outline an extension of our approach to a multiple time point problem. All of our results are supported by simulations.

MSC:
62G05 Nonparametric estimation
62N99 Survival analysis and censored data
Software:
R
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Athreya, K. B. and Lahiri, S. N. (2006). Measure Theory and Probability Theory . Springer, New York. · Zbl 1125.60001 · doi:10.1007/978-0-387-35434-7
[2] Audibert, J.-Y. and Tsybakov, A. B. (2007). Fast learning rates for plug-in classifiers. Ann. Statist. 35 608-633. · Zbl 1118.62041 · doi:10.1214/009053606000001217 · arxiv:0708.2321
[3] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models . Johns Hopkins Univ. Press, Baltimore, MD. · Zbl 0786.62001
[4] Chakraborty, B., Laber, E. B. and Zhao, Y.-Q. (2014). Inference about the expected performance of a data-driven dynamic treatment regime. Clin. Trials 11 408-417.
[5] Chakraborty, B. and Moodie, E. E. M. (2013). Statistical Methods for Dynamic Treatment Regimes . Springer, New York. · Zbl 1278.62169 · doi:10.1007/978-1-4614-7428-9
[6] Chen, J. (2004). Notes on the bias-variance trade-off phenomenon. In A Festschrift for Herman Rubin. Institute of Mathematical Statistics Lecture Notes-Monograph Series 45 207-217. IMS, Beachwood, OH. · Zbl 1268.62029 · doi:10.1214/lnms/1196285391
[7] Gaenssler, P., Strobel, J. and Stute, W. (1978). On central limit theorems for martingale triangular arrays. Acta Math. Acad. Sci. Hungar. 31 205-216. · Zbl 0374.60031 · doi:10.1007/BF01901971
[8] Goldberg, Y., Song, R., Zeng, D. and Kosorok, M. R. (2014). Comment on “Dynamic treatment regimes: Technical challenges and applications” [MR3263118]. Electron. J. Stat. 8 1290-1300. · Zbl 1309.62171 · doi:10.1214/14-EJS905 · euclid:ejs/1408540285
[9] Hirano, K. and Porter, J. R. (2012). Impossibility results for nondifferentiable functionals. Econometrica 80 1769-1790. · Zbl 1274.62240 · doi:10.3982/ECTA8681
[10] Laber, E. B. and Murphy, S. A. (2011). Adaptive confidence intervals for the test error in classification. J. Amer. Statist. Assoc. 106 904-913. · Zbl 1229.62085 · doi:10.1198/jasa.2010.tm10053
[11] Laber, E. B., Lizotte, D. J., Qian, M., Pelham, W. E. and Murphy, S. A. (2014a). Dynamic treatment regimes: Technical challenges and applications. Electron. J. Stat. 8 1225-1272. · Zbl 1298.62189 · doi:10.1214/14-EJS920 · euclid:ejs/1408540283
[12] Laber, E. B., Lizotte, D. J., Qian, M., Pelham, W. E. and Murphy, S. A. (2014b). Rejoinder of “Dynamic treatment regimes: Technical challenges and applications.” Electron. J. Stat. 8 1312-1321. · Zbl 1309.62174 · doi:10.1214/14-EJS920REJ · euclid:ejs/1408540288
[13] Langford, J., Li, L. and Zhang, T. (2009). Sparse online learning via truncated gradient. In Advances in Neural Information Processing Systems 21 908-915. Curran Associates, Red Hook, NY. · Zbl 1235.68167
[14] Liu, R. C. and Brown, L. D. (1993). Nonexistence of informative unbiased estimators in singular problems. Ann. Statist. 21 1-13. · Zbl 0783.62026 · doi:10.1214/aos/1176349012
[15] Luedtke, A. R. and van der Laan, M. J. (2014). Super-learning of an optimal dynamic treatment rule. Technical Report 326, Division of Biostatistics, Univ. California, Berkeley. Available at . · www.bepress.com
[16] Luedtke, A. R. and van der Laan, M. J. (2015). Supplement to “Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy.” . · Zbl 1338.62089 · doi:10.1214/15-AOS1384 · euclid:aos/1458245733
[17] Luts, J., Broderick, T. and Wand, M. P. (2014). Real-time semiparametric regression. J. Comput. Graph. Statist. 23 589-615. · doi:10.1080/10618600.2013.810150
[18] Qian, M. and Murphy, S. A. (2011). Performance guarantees for individualized treatment rules. Ann. Statist. 39 1180-1210. · Zbl 1216.62178 · doi:10.1214/10-AOS864 · arxiv:1105.3369
[19] R Core Team (2014). R : A Language and Environment for Statistical Computing . R Foundation for Statistical Computing, Vienna, Austria. Available at . · www.r-project.org
[20] Robins, J. M. (2004). Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium in Biostatistics. Lecture Notes in Statist. 179 189-326. Springer, New York. · Zbl 1279.62024 · doi:10.1007/978-1-4419-9076-1_11
[21] Robins, J. and Rotnitzky, A. (2014). Discussion of “Dynamic treatment regimes: Technical challenges and applications” [MR3263118]. Electron. J. Stat. 8 1273-1289. · Zbl 1309.62179 · doi:10.1214/14-EJS908 · euclid:ejs/1408540284
[22] Rubin, D. B. and van der Laan, M. J. (2012). Statistical issues and limitations in personalized medicine research with clinical trials. Int. J. Biostat. 8 Article 18.
[23] Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135-166. · Zbl 1105.62353 · doi:10.1214/aos/1079120131 · euclid:aos/1079120131
[24] van der Laan, M. J. and Lendle, S. D. (2014). Online targeted learning. Technical Report 330, Division of Biostatistics, Univ. California, Berkeley. Available at . · www.bepress.com
[25] van der Laan, M. J. and Luedtke, A. R. (2014a). Targeted learning of an optimal dynamic treatment, and statistical inference for its mean outcome. Technical Report 329, Division of Biostatistics, Univ. California, Berkeley. Available at . · www.bepress.com
[26] van der Laan, M. J. and Luedtke, A. R. (2014b). Targeted learning of the mean outcome under an optimal dynamic treatment rule. J. Causal Inference 3 61-95.
[27] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes . Springer, New York. · Zbl 0862.60002
[28] Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient descent algorithms. In ICML’ 04 Proceedings of the Twenty-First International Conference on Machine Learning 116. ACM, New York.
[29] Zhang, B., Tsiatis, A., Davidian, M., Zhang, M. and Laber, E. (2012a). A robust method for estimating optimal treatment regimes. Biometrics 68 1010-1018. · Zbl 1258.62116 · doi:10.1111/j.1541-0420.2012.01763.x
[30] Zhang, B., Tsiatis, A. A., Davidian, M., Zhang, M. and Laber, E. (2012b). Estimating optimal treatment regimes from a classification perspective. Statistics 68 103-114. · Zbl 1258.62116 · doi:10.1111/j.1541-0420.2012.01763.x
[31] Zhao, Y., Zeng, D., Rush, A. J. and Kosorok, M. R. (2012). Estimating individualized treatment rules using outcome weighted learning. J. Amer. Statist. Assoc. 107 1106-1118. · Zbl 1443.62396 · doi:10.1080/01621459.2012.695674
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.