×

Inference for single-index quantile regression models with profile optimization. (English) Zbl 1338.62119

Summary: Single index models offer greater flexibility in data analysis than linear models but retain some of the desirable properties such as the interpretability of the coefficients. We consider a pseudo-profile likelihood approach to estimation and testing for single-index quantile regression models. We establish the asymptotic normality of the index coefficient estimator as well as the optimal convergence rate of the nonparametric function estimation. Moreover, we propose a score test for the index coefficient based on the gradient of the pseudo-profile likelihood, and employ a penalized procedure to perform consistent model selection and model estimation simultaneously. We also use Monte Carlo studies to support our asymptotic results, and use an empirical example to illustrate the proposed method.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Andrews, D. W. K. (1987). Consistency in nonlinear econometric models: A generic uniform law of large numbers. Econometrica 55 1465-1471. · Zbl 0646.62101
[2] Belloni, A. and Chernozhukov, V. (2011). \(\ell_{1}\)-penalized quantile regression in high-dimensional sparse models. Ann. Statist. 39 82-130. · Zbl 1209.62064
[3] Bhattacharya, P. K. and Gangopadhyay, A. K. (1990). Kernel and nearest-neighbor estimation of a conditional quantile. Ann. Statist. 18 1400-1415. · Zbl 0706.62040
[4] Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes , 2nd ed. Springer, New York. · Zbl 0902.62099
[5] Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. J. Amer. Statist. Assoc. 92 477-489. · Zbl 0890.62053
[6] Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann. Statist. 19 760-777. · Zbl 0728.62042
[7] Chaudhuri, P., Doksum, K. and Samarov, A. (1997). On average derivative quantile regression. Ann. Statist. 25 715-744. · Zbl 0898.62082
[8] Cui, X., Härdle, W. K. and Zhu, L. (2011). The EFM approach for single-index models. Ann. Statist. 39 1658-1688. · Zbl 1221.62062
[9] de Boor, C. (2001). A Practical Guide to Splines , Revised ed. Applied Mathematical Sciences 27 . Springer, New York. · Zbl 0987.65015
[10] De Gooijer, J. G. and Zerom, D. (2003). On additive conditional quantiles with high-dimensional covariates. J. Amer. Statist. Assoc. 98 135-146. · Zbl 1047.62027
[11] Fan, J., Hu, T. C. and Truong, Y. K. (1994). Robust non-parametric function estimation. Scand. J. Stat. 21 433-446. · Zbl 0810.62038
[12] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. · Zbl 1073.62547
[13] Geyer, C. J. (1994). On the asymptotics of constrained \(M\)-estimation. Ann. Statist. 22 1993-2010. · Zbl 0829.62029
[14] Hammer, S. M., Squires, K. E., Hughes, M. D., Grimes, J. M., Demeter, L. M., Currier, J. S., Eron, J. J., Feinberg, J. E., Balfour, H. H., Deyton, L. R., Chodakewitz, J. A. and Fischl, M. A. (1997). A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS clinical trials group 320 study team. N. Engl. J. Med. 337 725-733.
[15] He, X., Ng, P. and Portnoy, S. (1998). Bivariate quantile smoothing splines. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 537-550. · Zbl 0909.62038
[16] He, X. and Shi, P. D. (1994). Convergence rate of \(B\)-spline estimators of nonparametric conditional quantile functions. J. Nonparametr. Stat. 3 299-308. · Zbl 1383.62111
[17] He, X. and Shi, P. (1996). Bivariate tensor-product \(B\)-splines in a partly linear model. J. Multivariate Anal. 58 162-181. · Zbl 0865.62027
[18] Horowitz, J. L. and Lee, S. (2005). Nonparametric estimation of an additive quantile regression model. J. Amer. Statist. Assoc. 100 1238-1249. · Zbl 1117.62355
[19] Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58 71-120. · Zbl 0816.62079
[20] Kai, B., Li, R. and Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models. Ann. Statist. 39 305-332. · Zbl 1209.62074
[21] Kim, M.-O. (2007). Quantile regression with varying coefficients. Ann. Statist. 35 92-108. · Zbl 1114.62051
[22] Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356-1378. · Zbl 1105.62357
[23] Kocherginsky, M., He, X. and Mu, Y. (2005). Practical confidence intervals for regression quantiles. J. Comput. Graph. Statist. 14 41-55.
[24] Koenker, R. (2005). Quantile Regression . Cambridge Univ. Press, Cambridge. · Zbl 1111.62037
[25] Koenker, R. (2011). Additive models for quantile regression: Model selection and confidence bandaids. Braz. J. Probab. Stat. 25 239-262. · Zbl 1236.62031
[26] Koenker, R. and Bassett, G. Jr. (1978). Regression quantiles. Econometrica 46 33-50. · Zbl 0373.62038
[27] Koenker, R., Ng, P. and Portnoy, S. (1994). Quantile smoothing splines. Biometrika 81 673-680. · Zbl 0810.62040
[28] Kong, E. and Xia, Y. (2012). A single-index quantile regression model and its estimation. Econometric Theory 28 730-768. · Zbl 1419.62090
[29] Liang, H., Liu, X., Li, R. and Tsai, C.-L. (2010). Estimation and testing for partially linear single-index models. Ann. Statist. 38 3811-3836. · Zbl 1204.62068
[30] Ma, S. and He, X. (2015). Supplement to “Inference for single-index quantile regression models with profile optimization.” . · Zbl 1338.62119
[31] Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449-485. · Zbl 0995.62033
[32] Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory 7 186-199. · Zbl 04504753
[33] Portnoy, S. (1997). Local asymptotics for quantile smoothing splines. Ann. Statist. 25 414-434. · Zbl 0898.62044
[34] Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semiparametric models. J. Amer. Statist. Assoc. 89 501-511. · Zbl 0798.62046
[35] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. · Zbl 0850.62538
[36] Wang, H., Li, R. and Tsai, C.-L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 94 553-568. · Zbl 1135.62058
[37] Wang, J. and Yang, L. (2009). Polynomial spline confidence bands for regression curves. Statist. Sinica 19 325-342. · Zbl 1225.62055
[38] Wang, H. J., Zhu, Z. and Zhou, J. (2009). Quantile regression in partially linear varying coefficient models. Ann. Statist. 37 3841-3866. · Zbl 1191.62077
[39] Wu, Y. and Liu, Y. (2009). Variable selection in quantile regression. Statist. Sinica 19 801-817. · Zbl 1166.62012
[40] Wu, T. Z., Yu, K. and Yu, Y. (2010). Single-index quantile regression. J. Multivariate Anal. 101 1607-1621. · Zbl 1189.62075
[41] Xia, Y. and Härdle, W. (2006). Semi-parametric estimation of partially linear single-index models. J. Multivariate Anal. 97 1162-1184. · Zbl 1089.62050
[42] Xia, Y., Tong, H. and Li, W. K. (1999). On extended partially linear single-index models. Biometrika 86 831-842. · Zbl 0942.62109
[43] Yu, K. and Jones, M. C. (1998). Local linear quantile regression. J. Amer. Statist. Assoc. 93 228-237. · Zbl 0906.62038
[44] Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models. J. Amer. Statist. Assoc. 97 1042-1054. · Zbl 1045.62035
[45] Zhu, L., Huang, M. and Li, R. (2012). Semiparametric quantile regression with high-dimensional covariates. Statist. Sinica 22 1379-1401. · Zbl 1253.62032
[46] Zou, H. and Li, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36 1509-1533. · Zbl 1142.62027
[47] Zou, Q. and Zhu, Z. (2014). M-estimators for single-index model using B-spline. Metrika 77 225-246. · Zbl 1304.62055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.