Bufetov, Alexander I.; Solomyak, Boris On the modulus of continuity for spectral measures in substitution dynamics. (English) Zbl 1339.37004 Adv. Math. 260, 84-129 (2014). In the paper under review some properties (like modulus of continuity and dimension-like) of spectral measure of suspension flows over substitution dynamical systems are investigated. One of the main results gives a Hölder property of spectral measures of self-similar suspension flows at zero with explicitly computed Hölder exponent. Reviewer: Ivan Podvigin (Novosibirsk) Cited in 1 ReviewCited in 23 Documents MSC: 37A30 Ergodic theorems, spectral theory, Markov operators 37B10 Symbolic dynamics 37E35 Flows on surfaces 28A78 Hausdorff and packing measures Keywords:substitution dynamical system; spectral measure; Hölder continuity; Diophantine approximation; Bernoulli convolution PDF BibTeX XML Cite \textit{A. I. Bufetov} and \textit{B. Solomyak}, Adv. Math. 260, 84--129 (2014; Zbl 1339.37004) Full Text: DOI arXiv References: [1] Adamczewski, B., Symbolic discrepancy and self-similar dynamics, Ann. Inst. Fourier (Grenoble), 54, 7, 2201-2234 (2004) · Zbl 1066.11032 [2] Aubry, S.; Godrèche, C.; Luck, J. M., Scaling properties of a structure intermediate between quasiperiodic and random, J. Stat. Phys., 51, 5-6, 1033-1075 (1988) · Zbl 1086.37522 [3] Baake, M.; Gähler, F.; Grimm, U., Spectral and topological properties of a family of generalised Thue-Morse sequences, J. Math. Phys., 53, 3, 032701 (2012) · Zbl 1274.28006 [4] Berend, D.; Radin, C., Are there chaotic tilings?, Comm. Math. Phys., 152, 2, 215-219 (1993) · Zbl 0790.28011 [5] Bourgain, J., On the spectral type of Ornstein’s class one transformation, Israel J. Math., 84, 53-63 (1993) · Zbl 0787.28011 [6] Bufetov, A. I., Limit theorems for suspension flows over Vershik automorphisms, Russian Math. Surveys, 68, 5, 789-860 (2013) · Zbl 1396.37015 [7] Bufetov, A. I., Limit theorems for translation flows, Ann. of Math., 179, 431-499 (2014) · Zbl 1290.37023 [8] Bufetov, A.; Solomyak, B., Limit theorems for self-similar tilings, Comm. Math. Phys., 319, 3, 761-789 (2013) · Zbl 1279.37019 [9] Cheng, Z.; Savit, R., Structure factor of substitutional sequences, J. Stat. Phys., 60, 3/4, 383-393 (1990) · Zbl 0724.11012 [10] Choksi, J.; Nadkarni, M., The maximal spectral type of a rank one transformation, Canad. Math. Bull., 37, 29-36 (1994) · Zbl 0793.28013 [11] Clark, A.; Sadun, L., When size matters: subshifts and their related tiling spaces, Ergodic Theory Dynam. Systems, 23, 1043-1057 (2003) · Zbl 1042.37008 [12] Dai, X.-R., When does a Bernoulli convolution admit a spectrum?, Adv. Math., 231, 1681-1693 (2012) · Zbl 1266.42012 [13] Dai, X.-R.; Feng, D.-J.; Wang, Y., Refinable functions with non-integer dilations, J. Funct. Anal., 250, 1-20 (2007) · Zbl 1128.42018 [14] Damanik, D.; Gorodetski, A., Hölder continuity of the integrated density of states for the Fibonacci Hamiltonian, Comm. Math. Phys., 323, 2, 497-515 (2013) · Zbl 1276.81059 [15] Dekking, M.; Keane, M., Mixing properties of substitutions, Zeit. Wahr. Verw. Gebiete, 42, 23-33 (1978) · Zbl 0352.28007 [16] Dooley, A. H.; Eigen, S. J., A family of generalized Riesz products, Canad. J. Math., 48, 2, 302-315 (1996) · Zbl 0864.28010 [17] Dumont, J.-M.; Kamae, T.; Takahashi, S., Minimal cocycles with the scaling property and substitutions, Israel J. Math., 95, 393-410 (1996) · Zbl 0866.54033 [18] Dumont, J.-M.; Thomas, A., Systèmes de numeration et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., 65, 153-169 (1989) · Zbl 0679.10010 [19] Dworkin, S., Spectral theory and \(X\)-ray diffraction, J. Math. Phys., 34, 2965-2967 (1993) · Zbl 0808.47052 [20] El Abdalaoui, E. H., A new class of rank-one transformations with singular spectrum, Ergodic Theory Dynam. Systems, 27, 5, 1541-1555 (2007) · Zbl 1136.37004 [21] Erdős, P., On a family of symmetric Bernoulli convolutions, Amer. J. Math., 61, 974-975 (1939) · JFM 65.1308.01 [22] Erdős, P., On the smoothness properties of Bernoulli convolutions, Amer. J. Math., 62, 180-186 (1940) · JFM 66.0511.02 [23] Falconer, K. J., Techniques in Fractal Geometry (1997), John Wiley & Sons · Zbl 0869.28003 [24] Ferenczi, S., Systems of finite rank, Colloq. Math., 73, 1, 35-65 (1997) · Zbl 0883.28014 [25] Ferenczi, S.; Mauduit, C.; Nogueira, A., Substitution dynamical systems: algebraic characterization of eigenvalues, Ann. Sci. Ec. Norm. Super. (4), 29, 4, 519-533 (1996) · Zbl 0866.11023 [26] Fogg, P. N., Substitutions in Dynamics Arithmetics and Combinatorics, (Lecture Notes in Math., vol. 1794 (2002), Springer: Springer Berlin), edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel · Zbl 1014.11015 [27] Forni, J.; Ulcigrai, C., Time-changes of horocycle flows, J. Mod. Dyn., 6, 2, 251-273 (2012) · Zbl 1254.37006 [28] Frank, N. P., Substitution sequences in \(Z^d\) with a non-simple Lebesgue component in the spectrum, Ergodic Theory Dynam. Systems, 23, 519-532 (2003) · Zbl 1031.11009 [29] Gähler, F.; Klitzing, R., The diffraction pattern of self-similar tilings, (The Mathematics of Long-Range Aperiodic Order. The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995. The Mathematics of Long-Range Aperiodic Order. The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 489 (1997), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 141-174 · Zbl 0887.52012 [30] Garsia, A., Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc., 102, 409-432 (1962) · Zbl 0103.36502 [31] Godrèche, C.; Luck, J. M., Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures, J. Phys. A: Math. Gen., 23, 3769-3797 (1990) · Zbl 0713.11021 [32] Hochman, M., On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2014), in press · Zbl 1337.28015 [33] Hof, A., Diffraction by aperiodic structures, (Moody, R. V., The Mathematics of Long-Range Aperiodic Order. The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995. The Mathematics of Long-Range Aperiodic Order. The Mathematics of Long-Range Aperiodic Order, Waterloo, ON, 1995, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 489 (1997), Kluwer Acad. Publ.: Kluwer Acad. Publ. Dordrecht), 239-268 · Zbl 0889.73014 [34] Hof, A., On scaling in relation to singular spectrum, Comm. Math. Phys., 184, 567-577 (1997) · Zbl 0874.60096 [35] Host, B., Valeurs propres des systémes dynamiques définis par des substitutions de longueur variable, Ergodic Theory Dynam. Systems, 6, 4, 529-540 (1986) · Zbl 0625.28011 [36] Kahane, J. P., Sur la distribution de certaines series aleatoires, Colloque Th. Nombres [1969]. Colloque Th. Nombres [1969], Bull. Soc. Math. France, Mémoire, 25, 119-122 (1971) · Zbl 0234.60002 [37] Kakutani, S., Strictly ergodic symbolic dynamical systems, (LeCam, L. M.; Neyman, J.; Scott, E. L., Proceedings of 6th Berkeley Symposium on Math. Statistics and Probability (1972), University of California Press: University of California Press Berkeley), 319-326 [38] Kershner, R., On singular Fourier-Stieltjes transforms, Amer. J. Math., 58, 2, 450-452 (1936) · JFM 62.0482.05 [39] Klemes, I.; Reinhold, K., Rank one transformations with singular spectral type, Israel J. Math., 98, 1-14 (1997) · Zbl 0884.28011 [40] Knill, O., Singular continuous spectrum and quantitative rates of mixing, Discrete Contin. Dyn. Syst., 4, 33-42 (1998) · Zbl 0949.28011 [41] Kolář, M.; Iochum, B.; Raymond, L., Structure factor if 1D systems (superlattices) based on two-letter substitution rules: I. \(δ\) (Bragg) peaks, J. Phys. A: Math. Gen., 26, 7343-7366 (1993) [42] Kwiatkowski, J.; Sikorski, A., Spectral properties of \(G\)-symbolic Morse shifts, Bull. Soc. Math. France, 115, 1, 19-33 (1987) · Zbl 0624.28014 [43] Last, Y., Quantum dynamics and decompositions of singular continuous spectra, J. Funct. Anal., 142, 406-445 (1996) · Zbl 0905.47059 [44] Lee, J.-Y.; Moody, R. V.; Solomyak, B., Consequences of pure point diffraction spectra for multiset substitution systems, Discrete Comput. Geom., 29, 525-560 (2003) · Zbl 1055.37019 [45] Peres, Y.; Schlag, W.; Solomyak, B., Sixty years of Bernoulli convolutions, (Bandt, C.; Graf, S.; Zähle, M., Fractal Geometry and Stochastics II. Fractal Geometry and Stochastics II, Progr. Probab., vol. 46 (2000), Birkhäuser), 39-65 · Zbl 0961.42006 [46] Queffelec, M., Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math., vol. 1294 (2010), Springer: Springer Berlin · Zbl 1225.11001 [47] Rauzy, G., Sequences defined by iterated morphisms, (Sequences. Sequences, Naples/Positano, 1988 (1990), Springer: Springer New York), 275-286 · Zbl 0955.28501 [48] Salem, R., A remarkable class of algebraic integers, proof of a conjecture by Vijayaraghavan, Duke Math. J., 11, 103-108 (1944) · Zbl 0063.06657 [49] Salem, R., Algebraic Numbers and Fourier Analysis (1963), D. C. Heath and Co. · Zbl 0126.07802 [50] Shmerkin, P., On the exceptional set for absolute continuity of Bernoulli convolutions, GAFA (2014), in press · Zbl 1305.28012 [51] Solomyak, B., On the random series \(\sum \pm \lambda^i\) (an Erdős problem), Ann. of Math., 142, 611-625 (1995) · Zbl 0837.28007 [52] Solomyak, B., Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17, 3, 695-738 (1997) · Zbl 0884.58062 [53] Vershik, A. M., A theorem on Markov periodic approximation in ergodic theory (Russian), (Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 14. Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 14, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 115 (1982)), 72-82, p. 306 · Zbl 0505.47006 [54] Vershik, A. M.; Livshits, A. N., Adic models of ergodic transformations, spectral theory, substitutions, and related topics, (Representation Theory and Dynamical Systems. Representation Theory and Dynamical Systems, Adv. Soviet Math., vol. 9 (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 185-204 · Zbl 0770.28013 [55] Weyl, H., Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77, 3, 313-352 (1916) · JFM 46.0278.06 [56] Zaks, M. A., On the dimensions of the spectral measure of symmetric binary substitutions, J. Phys. A, 35, 5833-5841 (2002) · Zbl 1039.37017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.