×

zbMATH — the first resource for mathematics

Asymptotic structure of free Araki-Woods factors. (English) Zbl 1339.46057
Summary: The purpose of this paper is to investigate the structure of Shlyakhtenko’s free Araki-Woods factors using the framework of ultraproduct von Neumann algebras. We first prove that all the free Araki-Woods factors \(\Gamma (H_{\mathbb R}, U_t)^{''}\) are \(\omega \)-solid in the following sense: for every von Neumann subalgebra \(Q \subset \Gamma (H_{\mathbb R}, U_t)^{''}\) that is the range of a faithful normal conditional expectation and such that the relative commutant \(Q' \cap M^\omega \) is diffuse, we have that \(Q\) is amenable. Next, we prove that the continuous cores of the free Araki-Woods factors \(\Gamma (H_{\mathbb R}, U_t)^{''}\) associated with mixing orthogonal representations \(U : \mathbb R \to \mathcal O(H_{\mathbb R})\) are \(\omega \)-solid type \(\mathrm{II}_\infty \) factors. Finally, when the orthogonal representation \(U : \mathbb R \to \mathcal O(H_{\mathbb R})\) is weakly mixing, we prove a dichotomy result for all the von Neumann subalgebras \(Q \subset \Gamma (H_{\mathbb R}, U_t)^{''}\) that are globally invariant under the modular automorphism group \((\sigma _t^{\varphi _U})\) of the free quasi-free state \(\varphi _U\).

MSC:
46L36 Classification of factors
46L10 General theory of von Neumann algebras
46L40 Automorphisms of selfadjoint operator algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Ando, H; Haagerup, U, Ultraproducts of von Neumann algebras, J. Funct. Anal., 266, 6842-6913, (2014) · Zbl 1305.46049
[2] Akemann, CA; Ostrand, PA, On a tensor product C\(^{*}\) -algebra associated with the free group on two generators, J. Math. Soc. Japan, 27, 589-599, (1975) · Zbl 0298.46067
[3] Boutonnet, R; Houdayer, C; Raum, S, Amalgamated free product type III factors with at most one Cartan subalgebra, Compos. Math., 150, 143-174, (2014) · Zbl 1308.46067
[4] Choi, MD, A Schwarz inequality for positive linear maps on C\(^{*}\)-algebras, Illinois J. Math., 18, 565-574, (1974) · Zbl 0293.46043
[5] Connes, A, Une classification des facteurs de type III, Ann. Sci. Éc. Norm. Supér., 4, 133-252, (1973) · Zbl 0274.46050
[6] Connes, A, Almost periodic states and factors of type III\(_{1}\), J. Funct. Anal., 16, 415-445, (1974) · Zbl 0302.46050
[7] Connes, A, Classification of injective factors. cases II\(_{1}\), II\(_{∞ }\), III\(_{λ }, λ ≠ 1\), Ann. Math. (2), 74, 73-115, (1976) · Zbl 0343.46042
[8] Houdayer, C.: Sur la classification de certaines algèbres de von Neumann. PhD thesis, Université de Paris VII (2007) · Zbl 1129.46062
[9] Houdayer, C, Structural results for free Araki-Woods factors and their continuous cores, J. Inst. Math. Jussieu, 9, 741-767, (2010) · Zbl 1207.46057
[10] Houdayer, C, A class of II\(_{1}\) factors with an exotic abelian maximal amenable subalgebra, Trans. Am. Math. Soc., 366, 3693-3707, (2014) · Zbl 1303.46044
[11] Houdayer, C, Structure of II\(_{1}\) factors arising from free bogoljubov actions of arbitrary groups, Adv. Math., 260, 414-457, (2014) · Zbl 1297.46042
[12] Houdayer, C.: Gamma stability in free product von Neumann algebras. Commun. Math. Phys. (2014). doi:10.1007/s00220-014-2237-0 · Zbl 1328.46046
[13] Houdayer, C; Ricard, É, Approximation properties and absence of Cartan subalgebra for free Araki-Woods factors, Adv. Math., 228, 764-802, (2011) · Zbl 1267.46071
[14] Ioana, A.: Cartan subalgebras of amalgamated free product II\(_{1}\) factors. Ann. Sci. Éc. Norm. Supér. (to appear, 2015). arXiv:1207.0054 · Zbl 1170.46053
[15] Ioana, A; Peterson, J; Popa, S, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math., 200, 85-153, (2008) · Zbl 1149.46047
[16] Ocneanu, A.: Actions of discrete amenable groups on von Neumann algebras. In: Lecture Notes in Mathematics, vol. 1138. Springer, Berlin (1985) · Zbl 0608.46035
[17] Ozawa, N, Solid von Neumann algebras, Acta Math., 192, 111-117, (2004) · Zbl 1072.46040
[18] Ozawa, N.: A comment on free group factors. In: Noncommutative harmonic analysis with applications to probability II. Banach Center Publications, vol. 89, pp. 241-245. Polish Acad. Sci. Inst. Math., Warsaw (2010) · Zbl 1214.46038
[19] Peterson, J, L\(^{2}\)-rigidity in von Neumann algebras, Invent. Math., 175, 417-433, (2009) · Zbl 1170.46053
[20] Popa, S, Maximal injective subalgebras in factors associated with free groups, Adv. Math., 50, 27-48, (1983) · Zbl 0545.46041
[21] Popa, S, Some rigidity results for non-commutative Bernoulli shifts, J. Funct. Anal., 230, 273-328, (2006) · Zbl 1097.46045
[22] Popa, S.: On a class of type II\(_{1}\) factors with Betti numbers invariants. Ann. Math. (2) 163(3), 809-899 (2006) · Zbl 1120.46045
[23] Popa, S, Strong rigidity of II\(_{1}\) factors arising from malleable actions of \(w\)-rigid groups. I, Invent. Math., 165, 369-408, (2006) · Zbl 1120.46043
[24] Popa, S.: Strong rigidity of II\(_{1}\) factors arising from malleable actions of \(w\)-rigid groups. II. Invent. Math. 165(2), 409-451 (2006) · Zbl 1120.46044
[25] Popa, S.: Deformation and rigidity for group actions and von Neumann algebras. In: Sanz-Solé, M., et al. (eds.) Proceedings of the international congress of mathematicians, Madrid, Spain, August 22-30, 2006. Plenary lectures and ceremonies, vol. I, pp. 445-477. European Mathematical Society, Zürich (2007) · Zbl 1132.46038
[26] Popa, S, On the superrigidity of malleable actions with spectral gap, J. Am. Math. Soc., 21, 981-1000, (2008) · Zbl 1222.46048
[27] Shlyakhtenko, D, Free quasi-free states, Pac. J. Math., 177, 329-368, (1997) · Zbl 0882.46026
[28] Shlyakhtenko, D, Some applications of freeness with amalgamation, J. Reine Angew. Math., 500, 191-212, (1998) · Zbl 0926.46046
[29] Shlyakhtenko, D, \(A\)-valued semicircular systems, J. Funct. Anal., 166, 1-47, (1999) · Zbl 0951.46035
[30] Takesaki, M.: Theory of Operator Algebras III. Springer, Berlin (2003) · Zbl 1059.46032
[31] Ueda, Y, On type \({\rm III}_{1}\) factors arising as free products, Math. Res. Lett., 18, 909-920, (2011) · Zbl 1243.46053
[32] Vaes, S.: États quasi-libres libres et facteurs de type \({\rm III}\). In: Séminaire Bourbaki. 2003/2004. Astérisque, vol. 937. Société Mathématique de France, Paris (2007)
[33] Vaes, S; Vergnioux, R, The boundary of universal discrete quantum groups, exactness, and factoriality, Duke Math. J., 140, 35-84, (2007) · Zbl 1129.46062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.