zbMATH — the first resource for mathematics

A weak approximation with asymptotic expansion and multidimensional Malliavin weights. (English) Zbl 1339.60099
Summary: This paper develops a new efficient scheme for approximations of expectations of the solutions to stochastic differential equations (SDEs). In particular, we present a method for connecting approximate operators based on an asymptotic expansion with multidimensional Malliavin weights to compute a target expectation value precisely. The mathematical validity is given based on Watanabe and Kusuoka theories in Malliavin calculus. Moreover, numerical experiments for option pricing under local and stochastic volatility models confirm the effectiveness of our scheme. Especially, our weak approximation substantially improves the accuracy at deep Out-of-The-Moneys (OTMs).

60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus
65C30 Numerical solutions to stochastic differential and integral equations
91G80 Financial applications of other theories
91G20 Derivative securities (option pricing, hedging, etc.)
91G60 Numerical methods (including Monte Carlo methods)
Full Text: DOI Euclid arXiv
[1] Bayer, C., Friz, P. and Loeffen, R. (2013). Semi-closed form cubature and applications to financial diffusion models. Quant. Finance 13 769-782. · Zbl 1281.91180
[2] Crisan, D., Manolarakis, K. and Nee, C. (2013). Cubature methods and applications. In Paris-Princeton Lectures on Mathematical Finance 2013. Lecture Notes in Math. 2081 203-316. Springer, Cham. · Zbl 1273.65011
[3] Fujii, M. (2014). Momentum-space approach to asymptotic expansion for stochastic filtering. Ann. Inst. Statist. Math. 66 93-120. · Zbl 1281.62214
[4] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E. (2002). Managing smile risk. Willmott Magazine July, 84-108.
[5] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes , 2nd ed. North-Holland Mathematical Library 24 . North-Holland, Amsterdam. · Zbl 0684.60040
[6] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus , 2nd ed. Graduate Texts in Mathematics 113 . Springer, New York. · Zbl 0734.60060
[7] Kunitomo, N. and Takahashi, A. (2003). On validity of the asymptotic expansion approach in contingent claim analysis. Ann. Appl. Probab. 13 914-952. · Zbl 1091.91037
[8] Kusuoka, S. (2001). Approximation of expectation of diffusion process and mathematical finance. In Taniguchi Conference on Mathematics Nara’ 98. Adv. Stud. Pure Math. 31 147-165. Math. Soc. Japan, Tokyo. · Zbl 1028.60052
[9] Kusuoka, S. (2003a). Malliavin calculus revisited. J. Math. Sci. Univ. Tokyo 10 261-277. · Zbl 1031.60048
[10] Kusuoka, S. (2003b). Approximation of expectation of diffusion process based on Lie algebra and Malliavin calculus. In Mathematical Economics , Kokyuroku 1337 205-209. Research Institute for Mathematical Sciences (RIMS), Kyoto Univ.
[11] Kusuoka, S. (2004). Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus. In Advances in Mathematical Economics 69-83. Springer, Tokyo. · Zbl 1111.60035
[12] Lyons, T. and Victoir, N. (2004). Cubature on Wiener space. Stochastic analysis with applications to mathematical finance. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 169-198. · Zbl 1055.60049
[13] Malliavin, P. (1997). Stochastic Analysis . Springer, Berlin. · Zbl 0878.60001
[14] Malliavin, P. and Thalmaier, A. (2006). Stochastic Calculus of Variations in Mathematical Finance . Springer, Berlin. · Zbl 1124.91035
[15] Nee, C. (2010). Lecture notes on gradient bounds for solutions of stochastic differential equations, applications to numerical schemes.
[16] Nee, C. (2011). Sharp gradient bounds for the diffusion semigroup. Ph.D thesis, Imperial College London.
[17] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Springer, Berlin. · Zbl 1099.60003
[18] Shigekawa, I. (2004). Stochastic Analysis. Translations of Mathematical Monographs 224 . Amer. Math. Soc., Providence, RI.
[19] Takahashi, A. (1999). An asymptotic expansion approach to pricing contingent claims. Asia-Pac. Financ. Mark. 6 115-151. · Zbl 1153.91568
[20] Takahashi, A., Takehara, K. and Toda, M. (2009). Computation in an asymptotic expansion method. CARF-F-149, Univ. Tokyo.
[21] Takahashi, A., Takehara, K. and Toda, M. (2012). A general computation scheme for a high-order asymptotic expansion method. Int. J. Theor. Appl. Finance 15 1250044, 25. · Zbl 1262.91072
[22] Takahashi, A. and Toda, M. (2013). Note on an extension of an asymptotic expansion scheme. Int. J. Theor. Appl. Finance 16 1350031, 23. · Zbl 1303.91192
[23] Takahashi, A. and Yamada, T. (2012a). An asymptotic expansion with push-down of Malliavin weights. SIAM J. Financial Math. 3 95-136. · Zbl 1257.91052
[24] Takahashi, A. and Yamada, T. (2012b). An asymptotic expansion for forward-backward SDEs: A Malliavin caluclus approach.
[25] Takahashi, A. and Yamada, T. (2013). An asymptotic expansion of forward-backward SDEs with a perturbed driver.
[26] Takahashi, A. and Yamada, T. (2015). On error estimates for asymptotic expansions with Malliavin weights-application to stochastic volatility model. Math. Oper. Res. 40 . · Zbl 1337.60158
[27] Violante, S. (2012). Asymptotics of Wiener functionals and applications to mathematical finance. Ph.D. thesis, Imperial College London.
[28] Watanabe, S. (1987). Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab. 15 1-39. · Zbl 0633.60077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.