zbMATH — the first resource for mathematics

A new coalescent for seed-bank models. (English) Zbl 1339.60137
Summary: We identify a new natural coalescent structure, which we call the seed-bank coalescent, that describes the gene genealogy of populations under the influence of a strong seed-bank effect, where “dormant forms” of individuals (such as seeds or spores) may jump a significant number of generations before joining the “active” population. Mathematically, our seed-bank coalescent appears as scaling limit in a Wright-Fisher model with geometric seed-bank age structure if the average time of seed dormancy scales with the order of the total population size \(N\). This extends earlier results of I. Kaj et al. [J. Appl. Probab. 38, No. 2, 285–300 (2001; Zbl 0989.92017)] who show that the genealogy of a Wright-Fisher model in the presence of a “weak” seed-bank effect is given by a suitably time-changed Kingman coalescent. The qualitatively new feature of the seed-bank coalescent is that ancestral lineages are independently blocked at a certain rate from taking part in coalescence events, thus strongly altering the predictions of classical coalescent models. In particular, the seed-bank coalescent “does not come down from infinity,” and the time to the most recent common ancestor of a sample of size \(n\) grows like \(\log\log n\). This is in line with the empirical observation that seed-banks drastically increase genetic variability in a population and indicates how they may serve as a buffer against other evolutionary forces such as genetic drift and selection.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
92D10 Genetics and epigenetics
17D92 Genetic algebras
PDF BibTeX Cite
Full Text: DOI Euclid arXiv
[1] Berestycki, N. (2009). Recent Progress in Coalescent Theory. Ensaios Matemáticos 16 . Sociedade Brasileira de Matemática, Rio de Janeiro. · Zbl 1204.60002
[2] Blath, J., González Casanova, A., Eldon, B. and Kurt, N. (2014). Genealogy of a Wright Fisher model with strong seed-bank component.
[3] Blath, J., González Casanova, A., Kurt, N. and Spanò, D. (2013). The ancestral process of long-range seed bank models. J. Appl. Probab. 50 741-759. · Zbl 1301.92053
[4] Dong, R., Gnedin, A. and Pitman, J. (2007). Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Probab. 17 1172-1201. · Zbl 1147.60022
[5] Etheridge, A. (2011). Some Mathematical Models from Population Genetics. Lecture Notes in Math. 2012 . Springer, Heidelberg. · Zbl 1320.92003
[6] Ethier, S. N. and Kurtz, T. G. (2005). Markov Processes : Characterization and Convergence , 2nd ed. Wiley, New York. · Zbl 1089.60005
[7] Feller, W. (1968). An Introduction to Probability Theory and Its Applications. Vol. I , 3rd ed. Wiley, New York. · Zbl 0155.23101
[8] Fisher, R. A. (1930). The Genetical Theory of Natural Selection . Oxford Univ. Press, London. · JFM 56.1106.13
[9] Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Probab. 10 718-745 (electronic). · Zbl 1109.60060
[10] González Casanova, A., Aguirre-von Wobeser, E., Espín, G., Servín-González, L., Kurt, N., Spanò, D., Blath, J. and Soberón-Chávez, G. (2014). Strong seed-bank effects in bacterial evolution. J. Theoret. Biol. 356 62-70.
[11] Herbots, H. M. (1994). Stochastic models in population genetics: Genealogical and genetic differentiation in structured populations. Ph.D. dissertation, Univ. London.
[12] Herbots, H. M. (1997). The structured coalescent. In Progress in Population Genetics and Human Evolution ( Minneapolis , MN , 1994). IMA Vol. Math. Appl. 87 231-255. Springer, New York. · Zbl 0907.92018
[13] Jansen, S. and Kurt, N. (2014). On the notion(s) of duality for Markov processes. Probab. Surv. 11 59-120. · Zbl 1292.60077
[14] Jenkins, P. A., Fearnhead, P. and Song, Y. S. (2014). Tractable stochastic models of evolution for loosely linked loci. Available at . arXiv:1405.6863
[15] Kaj, I., Krone, S. M. and Lascoux, M. (2001). Coalescent theory for seed bank models. J. Appl. Probab. 38 285-300. · Zbl 0989.92017
[16] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235-248. · Zbl 0491.60076
[17] Lennon, J. T. and Jones, S. E. (2011). Microbial seed banks: The ecological and evolutionary implications of dormancy. Nature Reviews Microbiology 9 119-130.
[18] Levin, D. A. (1990). The seed bank as a source of genetic novelty in plants. Amer. Nat. 135 563-572.
[19] Neuhauser, C. and Krone, S. M. (1997). The genealogy of samples in models with selection. Genetics 145 519-534.
[20] Notohara, M. (1990). The coalescent and the genealogical process in geographically structured population. J. Math. Biol. 29 59-75. · Zbl 0726.92014
[21] Nunney, L. (2002). The effective size of annual plant populations: The interaction of a seed bank with fluctuating population size in maintaining genetic variation. Amer. Nat. 160 195-204.
[22] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870-1902. · Zbl 0963.60079
[23] Schweinsberg, J. (2000). A necessary and sufficient condition for the \(\Lambda\)-coalescent to come down from infinity. Electron. Commun. Probab. 5 1-11 (electronic). · Zbl 0953.60072
[24] Takahata, N. (1988). The coalescent in two partially isolated diffusion populations. Genet. Res. 53 213-222.
[25] Tellier, A., Laurent, S. J. Y., Lainer, H., Pavlidis, P. and Stephan, W. (2011). Inference of seed bank parameters in two wild tomato species using ecological and genetic data. Proc. Natl. Acad. Sci. USA 108 17052-17057.
[26] Templeton, A. R. and Levin, D. A. (1979). Evolutionary consequences of seed pools. Amer. Nat. 114 232-249.
[27] Vitalis, R., Glémin, S. and Oliviere, I. (2004). When genes got to sleep: The population genetic consequences of seed dormancy and monocarpic perenniality. Amer. Nat. 163 295-311.
[28] Wakeley, J. (2009). Coalescent Theory . Roberts and Co, Greenwood Village, Colorado. · Zbl 1297.00034
[29] Wright, S. (1931). Evolution in Mendelian populations. Genetics 16 97-159.
[30] Živković, D. and Tellier, A. (2012). Germ banks affect the inference of past demographic events. Mol. Ecol. 21 5434-5446.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.