zbMATH — the first resource for mathematics

Quantitative propagation of chaos for generalized Kac particle systems. (English) Zbl 1339.60138
Summary: We study a class of one-dimensional particle systems with true (Bird type) binary interactions, which includes Kac’s model of the Boltzmann equation and nonlinear equations for the evolution of wealth distribution arising in kinetic economic models. We obtain explicit rates of convergence for the Wasserstein distance between the law of the particles and their limiting law, which are linear in time and depend in a mild polynomial manner on the number of particles. The proof is based on a novel coupling between the particle system and a suitable system of nonindependent nonlinear processes, as well as on recent sharp estimates for empirical measures.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
91B70 Stochastic models in economics
Full Text: DOI Euclid arXiv
[1] Ambrosio, L., Gigli, N. and Savaré, G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures , 2nd ed. Birkhäuser, Basel. · Zbl 1145.35001
[2] Bassetti, F., Ladelli, L. and Matthes, D. (2011). Central limit theorem for a class of one-dimensional kinetic equations. Probab. Theory Related Fields 150 77-109. · Zbl 1225.82055 · doi:10.1007/s00440-010-0269-8 · arxiv:0809.1545
[3] Carrapatoso, K. (2014a). Quantitative and qualitative Kac’s chaos on the Boltzmann’s sphere. Preprint. Available at . arXiv:1205.1241 · Zbl 1341.60122 · doi:10.1214/14-AIHP612 · euclid:aihp/1435759238
[4] Carrapatoso, K. (2014b). Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Preprint. Available at . arXiv:1212.3724 · Zbl 1332.82075 · doi:10.3934/krm.2016.9.1 · arxiv.org
[5] Desvillettes, L., Graham, C. and Méléard, S. (1999). Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stochastic Process. Appl. 84 115-135. · Zbl 1009.76081 · doi:10.1016/S0304-4149(99)00056-3
[6] Fontbona, J., Guérin, H. and Méléard, S. (2009). Measurability of optimal transportation and convergence rate for Landau type interacting particle systems. Probab. Theory Related Fields 143 329-351. · Zbl 1183.60037 · doi:10.1007/s00440-007-0128-4
[7] Fournier, N. and Godinho, D. (2012). Asymptotic of grazing collisions and particle approximation for the Kac equation without cutoff. Comm. Math. Phys. 316 307-344. · Zbl 1273.82058 · doi:10.1007/s00220-012-1578-9 · arxiv:1106.2660
[8] Fournier, N. and Guillin, A. (2013). On the rate of convergence in Wasserstein distance of the empirical measure. Preprint. Available at . arXiv:1312.2128v1 · Zbl 1325.60042 · doi:10.1007/s00440-014-0583-7 · arxiv.org
[9] Fournier, N. and Mischler, S. (2014). Rate of convergence of the Nanbu particle system for hard potentials. Preprint. Available at . arXiv:1302.5810 · Zbl 1341.82060 · doi:10.1214/14-AOP983 · euclid:aop/1454423051
[10] Funaki, T. (1984). A certain class of diffusion processes associated with nonlinear parabolic equations. Z. Wahrsch. Verw. Gebiete 67 331-348. · Zbl 0546.60081 · doi:10.1007/BF00535008
[11] Graham, C. and Méléard, S. (1997). Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab. 25 115-132. · Zbl 0873.60076 · doi:10.1214/aop/1024404281
[12] Guérin, H. (2003). Solving Landau equation for some soft potentials through a probabilistic approach. Ann. Appl. Probab. 13 515-539. · Zbl 1070.82027 · doi:10.1214/aoap/1050689592
[13] Hauray, M. and Mischler, S. (2014). On Kac’s chaos and related problems. J. Funct. Anal. 266 6055-6157. · Zbl 1396.60102 · doi:10.1016/j.jfa.2014.02.030
[14] Kac, M. (1956). Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability , 1954 - 1955, Vol. III 171-197. Univ. California Press, Berkeley and Los Angeles. · Zbl 0072.42802
[15] Kallenberg, O. (2002). Foundations of Modern Probability , 2nd ed. Springer, New York. · Zbl 0996.60001
[16] Matthes, D. and Toscani, G. (2008). On steady distributions of kinetic models of conservative economies. J. Stat. Phys. 130 1087-1117. · Zbl 1138.91020 · doi:10.1007/s10955-007-9462-2
[17] Mischler, S. and Mouhot, C. (2013). Kac’s program in kinetic theory. Invent. Math. 193 1-147. · Zbl 1274.82048 · doi:10.1007/s00222-012-0422-3
[18] Pulvirenti, A. and Toscani, G. (2004). Asymptotic properties of the inelastic Kac model. J. Stat. Phys. 114 1453-1480. · Zbl 1072.82030 · doi:10.1023/B:JOSS.0000013964.98706.00
[19] Rachev, S. T. and Rüschendorf, L. (1998). Mass Transportation Problems : Theory. Vol. I . Springer, New York. · Zbl 0990.60500
[20] Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX- 1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin. · Zbl 0732.60114 · doi:10.1007/BFb0085169
[21] Tanaka, H. (1978). On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian molecules. In Proceedings of the International Symposium on Stochastic Differential Equations ( Res. Inst. Math. Sci. , Kyoto Univ. , Kyoto , 1976) 409-425. Wiley, New York. · Zbl 0419.60077
[22] Tanaka, H. (1978/1979). Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46 67-105. · Zbl 0389.60079 · doi:10.1007/BF00535689
[23] Villani, C. (2009). Optimal Transport. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 338 . Springer, Berlin. · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.