×

Local time on the exceptional set of dynamical percolation and the incipient infinite cluster. (English) Zbl 1341.60128

Summary: In dynamical critical site percolation on the triangular lattice or bond percolation on \(\mathbb{Z}^{2}\), we define and study a local time measure on the exceptional times at which the origin is in an infinite cluster. We show that at a typical time with respect to this measure, the percolation configuration has the law of Kesten’s incipient infinite cluster. In the most technical result of this paper, we show that, on the other hand, at the first exceptional time the law of the configuration is different. We believe that the two laws are mutually singular, but do not show this. We also study the collapse of the infinite cluster near typical exceptional times and establish a relation between static and dynamic exponents, analogous to Kesten’s near-critical relation.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J55 Local time and additive functionals
82B43 Percolation
82B27 Critical phenomena in equilibrium statistical mechanics
60J67 Stochastic (Schramm-)Loewner evolution (SLE)
60D05 Geometric probability and stochastic geometry
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Ahlberg, D. (2013). The asymptotic shape, large deviations and dynamical stability in first-passage percolation on cones. Preprint. Available at . arXiv:1107.2280
[2] Angel, O., Goodman, J., den Hollander, F. and Slade, G. (2008). Invasion percolation on regular trees. Ann. Probab. 36 420-466. · Zbl 1145.60050 · doi:10.1214/07-AOP346
[3] Benjamini, I., Häggström, O., Peres, Y. and Steif, J. E. (2003). Which properties of a random sequence are dynamically sensitive? Ann. Probab. 31 1-34. · Zbl 1021.60055 · doi:10.1214/aop/1046294302
[4] Benjamini, I., Kalai, G. and Schramm, O. (1999). Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90 5-43 (2001). · Zbl 0986.60002 · doi:10.1007/BF02698830
[5] Benjamini, I. and Schramm, O. (1998). Exceptional planes of percolation. Probab. Theory Related Fields 111 551-564. · Zbl 0910.60076 · doi:10.1007/s004400050177
[6] Broman, E. I., Garban, C. and Steif, J. E. (2013). Exclusion sensitivity of Boolean functions. Probab. Theory Related Fields 155 621-663. · Zbl 1280.60055 · doi:10.1007/s00440-011-0409-9
[7] Broman, E. I. and Steif, J. E. (2006). Dynamical stability of percolation for some interacting particle systems and \(\varepsilon\)-movability. Ann. Probab. 34 539-576. · Zbl 1107.82058 · doi:10.1214/009117905000000602
[8] Camia, F. and Newman, C. M. (2007). Critical percolation exploration path and \(\mathrm{SLE}_{6}\): A proof of convergence. Probab. Theory Related Fields 139 473-519. · Zbl 1126.82007 · doi:10.1007/s00440-006-0049-7
[9] Damron, M., Sapozhnikov, A. and Vágvölgyi, B. (2009). Relations between invasion percolation and critical percolation in two dimensions. Ann. Probab. 37 2297-2331. · Zbl 1247.60134 · doi:10.1214/09-AOP462
[10] Duminil-Copin, H., Garban, C. and Pete, G. (2014). The near-critical planar FK-Ising model. Comm. Math. Phys. 326 1-35. · Zbl 1286.82003 · doi:10.1007/s00220-013-1857-0
[11] Fontes, L. R. G., Newman, C. M., Ravishankar, K. and Schertzer, E. (2009). Exceptional times for the dynamical discrete web. Stochastic Process. Appl. 119 2832-2858. · Zbl 1172.60334 · doi:10.1016/j.spa.2009.03.001
[12] Garban, C., Pete, G. and Schramm, O. (2013). The scaling limits of near-critical and dynamical percolation. Preprint. Available at . arXiv:1305.5526 · Zbl 1276.60111 · doi:10.1090/S0894-0347-2013-00772-9
[13] Garban, C., Pete, G. and Schramm, O. (2010). The Fourier spectrum of critical percolation. Acta Math. 205 19-104. · Zbl 1219.60084 · doi:10.1007/s11511-010-0051-x
[14] Garban, C., Pete, G. and Schramm, O. (2013). Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 939-1024. · Zbl 1276.60111 · doi:10.1090/S0894-0347-2013-00772-9
[15] Garban, C. and Steif, J. E. (2012). Noise sensitivity and percolation. In Probability and Statistical Physics in Two and More Dimensions (D. Ellwood, C. Newman, V. Sidoravicius and W. Werner, eds.). Clay Math. Proc. 15 49-154. Amer. Math. Soc., Providence, RI. · Zbl 1325.60156
[16] Grimmett, G. (1999). Percolation , 2nd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 321 . Springer, Berlin. · Zbl 0926.60004
[17] Häggström, O., Peres, Y. and Steif, J. E. (1997). Dynamical percolation. Ann. Inst. Henri Poincaré Probab. Stat. 33 497-528. · Zbl 0894.60098 · doi:10.1016/S0246-0203(97)80103-3
[18] Hammond, A., Mossel, E. and Pete, G. (2012). Exit time tails from pairwise decorrelation in hidden Markov chains, with applications to dynamical percolation. Electron. J. Probab. 17 no. 68, 16. · Zbl 1260.60151 · doi:10.1214/EJP.v17-2229
[19] Hara, T. and Slade, G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Stat. Phys. 99 1075-1168. · Zbl 0968.82016 · doi:10.1023/A:1018628503898
[20] Hara, T. and Slade, G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. J. Math. Phys. 41 1244-1293. · Zbl 0977.82022 · doi:10.1063/1.533186
[21] Hoffman, C. (2006). Recurrence of simple random walk on \(\mathbb{Z}^{2}\) is dynamically sensitive. ALEA Lat. Am. J. Probab. Math. Stat. 1 35-45. · Zbl 1107.60023
[22] Járai, A. A. (2003). Incipient infinite percolation clusters in 2D. Ann. Probab. 31 444-485. · Zbl 1061.60106 · doi:10.1214/aop/1046294317
[23] Kallenberg, O. (2002). Foundations of Modern Probability , 2nd ed. Springer, New York. · Zbl 0996.60001
[24] Kesten, H. (1986). The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields 73 369-394. · Zbl 0584.60098 · doi:10.1007/BF00776239
[25] Kesten, H. (1987). Scaling relations for \(2\)D-percolation. Comm. Math. Phys. 109 109-156. · Zbl 0616.60099 · doi:10.1007/BF01205674
[26] Kesten, H. (1987). A scaling relation at criticality for \(2\)D-percolation. In Percolation Theory and Ergodic Theory of Infinite Particle Systems ( Minneapolis , Minn. , 1984 - 1985). IMA Vol. Math. Appl. 8 203-212. Springer, New York.
[27] Khoshnevisan, D. (2008). Dynamical percolation on general trees. Probab. Theory Related Fields 140 169-193. · Zbl 1129.60095 · doi:10.1007/s00440-007-0061-6
[28] Lawler, G. F., Schramm, O. and Werner, W. (2002). One-arm exponent for critical 2D percolation. Electron. J. Probab. 7 no. 2, 13 pp. (electronic). · Zbl 1015.60091
[29] Liggett, T. M. (2002). Tagged particle distributions or how to choose a head at random. In In and Out of Equilibrium ( Mambucaba , 2000). Progress in Probability 51 133-162. Birkhäuser, Boston, MA. · Zbl 1108.60319 · doi:10.1007/978-1-4612-0063-5_5
[30] Liggett, T. M. (2005). Interacting Particle Systems . Springer, Berlin. Reprint of the 1985 original. · Zbl 1103.82016
[31] Lyons, R. and Peres, Y. (2015). Probability on Trees and Networks. Book in preparation, Cambridge Univ. Press. Current version available at .
[32] Nolin, P. (2008). Near-critical percolation in two dimensions. Electron. J. Probab. 13 1562-1623. · Zbl 1189.60182 · doi:10.1214/EJP.v13-565
[33] Peres, Y., Schramm, O. and Steif, J. E. (2009). Dynamical sensitivity of the infinite cluster in critical percolation. Ann. Inst. Henri Poincaré Probab. Stat. 45 491-514. · Zbl 1220.60058 · doi:10.1214/08-AIHP172
[34] Sapozhnikov, A. (2011). The incipient infinite cluster does not stochastically dominate the invasion percolation cluster in two dimensions. Electron. Commun. Probab. 16 775-780. · Zbl 1245.82059 · doi:10.1214/ECP.v16-1684
[35] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221-288. · Zbl 0968.60093 · doi:10.1007/BF02803524
[36] Schramm, O. and Smirnov, S. (2011). On the scaling limits of planar percolation. Ann. Probab. 39 1768-1814. With an appendix by Christophe Garban. · Zbl 1231.60116 · doi:10.1214/11-AOP659
[37] Schramm, O. and Steif, J. E. (2010). Quantitative noise sensitivity and exceptional times for percolation. Ann. of Math. (2) 171 619-672. · Zbl 1213.60160 · doi:10.4007/annals.2010.171.619
[38] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244. · Zbl 0985.60090 · doi:10.1016/S0764-4442(01)01991-7
[39] Smirnov, S. (2006). Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians. Vol. II 1421-1451. Eur. Math. Soc., Zürich. · Zbl 1112.82014
[40] Smirnov, S. and Werner, W. (2001). Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729-744. · Zbl 1009.60087 · doi:10.4310/MRL.2001.v8.n6.a4
[41] Steif, J. E. (2009). A survey of dynamical percolation. In Fractal Geometry and Stochastics IV. Progress in Probability 61 145-174. Birkhäuser, Basel. · Zbl 1186.60106 · doi:10.1007/978-3-0346-0030-9_5
[42] Sznitman, A.-S. (2012). Topics in Occupation Times and Gaussian Free Fields . European Mathematical Society (EMS), Zürich. · Zbl 1246.60003
[43] Werner, W. (2009). Lectures on two-dimensional critical percolation. In Statistical Mechanics. IAS/Park City Math. Ser. 16 297-360. Amer. Math. Soc., Providence, RI. · Zbl 1180.82003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.