zbMATH — the first resource for mathematics

Semiparametric efficient estimation for shared-frailty models with doubly-censored clustered data. (English) Zbl 1341.62285
Summary: In this paper, we investigate frailty models for clustered survival data that are subject to both left- and right-censoring, termed “doubly-censored data”. This model extends current survival literature by broadening the application of frailty models from right-censoring to a more complicated situation with additional left-censoring.
Our approach is motivated by a recent Hepatitis B study where the sample consists of families. We adopt a likelihood approach that aims at the nonparametric maximum likelihood estimators (NPMLE). A new algorithm is proposed, which not only works well for clustered data but also improve over existing algorithm for independent and doubly-censored data, a special case when the frailty variable is a constant equal to one. This special case is well known to be a computational challenge due to the left-censoring feature of the data. The new algorithm not only resolves this challenge but also accommodates the additional frailty variable effectively.
Asymptotic properties of the NPMLE are established along with semi-parametric efficiency of the NPMLE for the finite-dimensional parameters. The consistency of Bootstrap estimators for the standard errors of the NPMLE is also discussed. We conducted some simulations to illustrate the numerical performance and robustness of the proposed algorithm, which is also applied to the Hepatitis B data.

62N02 Estimation in survival analysis and censored data
62E20 Asymptotic distribution theory in statistics
Full Text: DOI Euclid
[1] Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Statist. Soc. B 61 265-285. · Zbl 0917.62058 · doi:10.1111/1467-9868.00176
[2] Caffo, B. S., Jank, W. and Jones, G. L. (2005). Ascent-based Monte Carlo expectation-maximization. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 235-251. · Zbl 1075.65011 · doi:10.1111/j.1467-9868.2005.00499.x
[3] Cai, T. and Cheng, S. (2004). Semiparametric regression analysis for doubly censored data. Biometrika 91 277-290. · Zbl 1081.62079 · doi:10.1093/biomet/91.2.277
[4] Chan, K. S. and Ledolter, J. (1995). Monte Carlo EM estimation for time series models involving counts. J. Amer. Statist. Assoc. 90 242-252. · Zbl 0819.62069 · doi:10.2307/2291149
[5] Chang, M. N. (1990). Weak convergence of a self-consistent estimator of the survival function with doubly censored data. Ann. Statist. 18 391-404. · Zbl 0706.62044 · doi:10.1214/aos/1176347506
[6] Chang, M. N. and Yang, G. L. (1987). Strong consistency of a nonparametric estimator of the survival function with doubly censored data. Ann. Statist. 15 1536-1547. · Zbl 0629.62040 · doi:10.1214/aos/1176350608
[7] Cheng, G. (2015). Moment consistency of the exchangeably weighted bootstrap for semiparametric M-estimation. Scand. J. Stat. 42 665-684. · Zbl 1360.62111 · doi:10.1111/sjos.12128
[8] Cheng, G. and Huang, J. Z. (2010). Bootstrap consistency for general semiparametric M-estimation. Ann. Statist. 38 2884-2915. · Zbl 1200.62042 · doi:10.1214/10-AOS809 · arxiv:0906.1310
[9] Cox, D. R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B 34 187-220. · Zbl 0243.62041 · www.jstor.org
[10] Cox, D. R. (1975). Partial likelihood. Biometrika 62 269-276. · Zbl 0312.62002 · doi:10.1093/biomet/62.2.269
[11] De Gruttola, V. and Lagakos, S. W. (1989). Analysis of doubly-censored survival data, with application to AIDS. Biometrics 45 1-11. · Zbl 0715.62223 · doi:10.2307/2532030
[12] Dupuy, J.-F., Grama, I. and Mesbah, M. (2006). Asymptotic theory for the Cox model with missing time-dependent covariate. Ann. Statist. 34 903-924. · Zbl 1092.62100 · doi:10.1214/009053606000000038 · arxiv:math/0607033
[13] Fort, G. and Moulines, E. (2003). Convergence of the Monte Carlo expectation maximization for curved exponential families. Ann. Statist. 31 1220-1259. · Zbl 1043.62015 · doi:10.1214/aos/1059655912 · euclid:aos/1059655912
[14] Kim, Y.-J. (2006). Regression analysis of doubly censored failure time data with frailty. Biometrics 62 458-464. · Zbl 1097.62096 · doi:10.1111/j.1541-0420.2005.00487.x
[15] Kim, M. Y., De Gruttola, V. and Lagakos, S. W. (1993). Analyzing doubly censored data with covariates, with application to AIDS. Biometrics 49 13-22. · Zbl 0776.62083 · doi:10.2307/2532598
[16] Kim, Y., Kim, B. and Jang, W. (2010). Asymptotic properties of the maximum likelihood estimator for the proportional hazards model with doubly censored data. J. Multivariate Anal. 101 1339-1351. · Zbl 1186.62121 · doi:10.1016/j.jmva.2010.01.010
[17] Kim, Y., Kim, J. and Jang, W. (2013). An EM algorithm for the proportional hazards model with doubly censored data. Comput. Statist. Data Anal. 57 41-51. · Zbl 1365.62373
[18] Murphy, S. A. (1994). Consistency in a proportional hazards model incorporating a random effect. Ann. Statist. 22 712-731. · Zbl 0827.62033 · doi:10.1214/aos/1176325492
[19] Murphy, S. A. (1995). Asymptotic theory for the frailty model. Ann. Statist. 23 182-198. · Zbl 0822.62069 · doi:10.1214/aos/1176324462
[20] Murphy, S. A., Rossini, A. J. and van der Vaart, A. W. (1997). Maximum likelihood estimation in the proportional odds model. J. Amer. Statist. Assoc. 92 968-976. · Zbl 0887.62038 · doi:10.2307/2965560
[21] Mykland, P. A. and Ren, J.-J. (1996). Algorithms for computing self-consistent and maximum likelihood estimators with doubly censored data. Ann. Statist. 24 1740-1764. · Zbl 0867.62019 · doi:10.1214/aos/1032298293
[22] Nielsen, G. G., Gill, R. D., Andersen, P. K. and Sørensen, T. I. A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scand. J. Stat. 19 25-43. · Zbl 0747.62093
[23] Parner, E. (1998). Asymptotic theory for the correlated gamma-frailty model. Ann. Statist. 26 183-214. · Zbl 0934.62101 · doi:10.1214/aos/1030563982
[24] Ripatti, S. and Palmgren, J. (2000). Estimation of multivariate frailty models using penalized partial likelihood. Biometrics 56 1016-1022. · Zbl 1060.62564 · doi:10.1111/j.0006-341X.2000.01016.x
[25] Su, Y.-R. (2011). Survival analysis for incomplete data. Ph.D. thesis, Univ. California, Davis.
[26] Su, Y. and Wang, J. (2015). Supplement to “Semiparametric efficient estimation for shared-frailty models with doubly-censored clustered data.” . · dx.doi.org
[27] Therneau, T. M., Grambsch, P. M. and Pankratz, V. S. (2003). Penalized survival models and frailty. J. Comput. Graph. Statist. 12 156-175. · doi:10.1198/1061860031365
[28] Tseng, Y.-K., Hsieh, F. and Wang, J.-L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika 92 587-603. · Zbl 1152.62380 · doi:10.1093/biomet/92.3.587
[29] Turnbull, B. W. (1974). Nonparametric estimation of a survivorship function with doubly censored data. J. Amer. Statist. Assoc. 69 169-173. · Zbl 0281.62044 · doi:10.2307/2285518
[30] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001
[31] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes : With Applications to Statistics . Springer, New York. · Zbl 0862.60002
[32] Vaupel, J. W., Manton, K. G. and Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16 439-454.
[33] Wu, J. F., Chen, C. C., Hsieh, R. P., Shih, H. H., Chen, Y. H., Li, C. R., Chiang, C. Y., Shau, W. Y., Ni, Y. H., Chen, H. L., Hsu, H. Y. and Chang, M. H. (2006). HLA typing associated with hepatitis B E antigen seroconversion in children with chronic hepatitis B virus infection: A long-term prospective sibling cohort study in Taiwan. J. Pediatr. 148 647-651.
[34] Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. Ann. Statist. 33 2132-2163. · Zbl 1086.62034 · doi:10.1214/009053605000000480 · arxiv:math/0602240
[35] Zhang, Y. and Jamshidian, M. (2004). On algorithms for the nonparametric maximum likelihood estimator of the failure function with censored data. J. Comput. Graph. Statist. 13 123-140. · doi:10.1198/1061860043038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.