Ferrari, Giorgio; Salminen, Paavo Irreversible investment under Lévy uncertainty: an equation for the optimal boundary. (English) Zbl 1341.93108 Adv. Appl. Probab. 48, No. 1, 298-314 (2016). Summary: We derive a new equation for the optimal investment boundary of a general irreversible investment problem under exponential Lévy uncertainty. The problem is set as an infinite time-horizon, two-dimensional degenerate singular stochastic control problem. In line with the results recently obtained in a diffusive setting, we show that the optimal boundary is intimately linked to the unique optional solution of an appropriate Bank-El Karoui representation problem. Such a relation and the Wiener-Hopf factorization allow us to derive an integral equation for the optimal investment boundary. In case the underlying Lévy process hits any point in \(\mathbb{R}\) with positive probability we show that the integral equation for the investment boundary is uniquely satisfied by the unique solution of another equation which is easier to handle. As a remarkable by-product we prove the continuity of the optimal investment boundary. The paper is concluded with explicit results for profit functions of Cobb-Douglas type and CES type. In the former case the function is separable and in the latter case nonseparable. Cited in 4 Documents MSC: 93E20 Optimal stochastic control 60G40 Stopping times; optimal stopping problems; gambling theory 60G51 Processes with independent increments; Lévy processes 91B70 Stochastic models in economics Keywords:free-boundary; irreversible investment; singular stochastic control; optimal stopping; Lévy process; Bank and El Karoui’s representation theorem; base capacity PDF BibTeX XML Cite \textit{G. Ferrari} and \textit{P. Salminen}, Adv. Appl. Probab. 48, No. 1, 298--314 (2016; Zbl 1341.93108) Full Text: DOI arXiv Euclid OpenURL References: [1] Abel, A. B. and Eberly, J. C. (1996). Optimal investment with costly reversibility. Rev. Econom. Stud. 63 , 581-593. · Zbl 0864.90011 [2] Alili, L. and Kyprianou, A. E. (2005). Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Prob. 15 , 2062-2080. · Zbl 1083.60034 [3] Baldursson, F. M. and Karatzas, I. (1996). Irreversible investment and industry equilibrium. Finance Stoch. 1 , 69-89. · Zbl 0883.90009 [4] Bank, P. (2005). Optimal control under a dynamic fuel constraint. SIAM J. Control Optimization 44 , 1529-1541. · Zbl 1116.49306 [5] Bank, P. and El Karoui, N. (2004). A stochastic representation theorem with applications to optimization and obstacle problems. Ann. Prob. 32 , 1030-1067. · Zbl 1058.60022 [6] Bank, P. and Föllmer, H. (2003). American options, multi-armed bandits, and optimal consumption plans: a unifying view. In Paris-Princeton Lectures on Mathematical Finance (Lecture Notes Math. 1814 ), Springer, Berlin, pp. 1-42.. · Zbl 1065.91022 [7] Bank, P. and Riedel, F. (2001). Optimal consumption choice with intertemporal substitution. Ann. Appl. Prob. 11 , 750-788. · Zbl 1022.90045 [8] Bentolila, S. and Bertola, G. (1990). Firing costs and labour demand: how bad is Eurosclerosis? Rev. Econom. Stud. 57 , 381-402. · Zbl 0703.90007 [9] Bertoin, J. (1996). Lévy Processes . Cambridge University Press. · Zbl 0861.60003 [10] Bertola, G. (1998). Irreversible investment. Res. Econom. 52 , 3-37. · Zbl 0897.90014 [11] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion–Facts and Formulae , 2nd edn. Birkhäuser, Basel. · Zbl 1012.60003 [12] Boyarchenko, S. (2004). Irreversible decisions and record-setting news principles. Amer. Econom. Rev. 94 , 557-568. [13] Boyarchenko, S. I. and Levendorskiĭ, S. Z. (2002). Perpetual American options under Lévy processes. SIAM J. Control Optimization 40 , 1663-1696. · Zbl 1025.60021 [14] Chiarolla, M. B. and Ferrari, G. (2014). Identifying the free boundary of a stochastic, irreversible investment problem via the Bank-El Karoui representation theorem. SIAM J. Control Optimization 52 , 1048-1070. · Zbl 1298.91118 [15] Chiarolla, M. B. and Haussmann, U. G. (2009). On a stochastic irreversible investment problem. SIAM J. Control Optimization 48 , 438-462. · Zbl 1189.91216 [16] Christensen, S., Salminen, P. and Ta, B. Q. (2013). Optimal stopping of strong Markov processes. Stoch. Process. Appl. 123 , 1138-1159. · Zbl 1272.60021 [17] Csáki, E., Földes, A. and Salminen, P. (1987). On the joint distribution of the maximum and its location for a linear diffusion. Ann. Inst. H. Poincaré Prob. Statist. 23 , 179-194. · Zbl 0621.60081 [18] Deligiannidis, G., Le, H. and Utev, S. (2009). Optimal stopping for processes with independent increments, and applications. J. Appl. Prob. 46 , 1130-1145. · Zbl 1213.60082 [19] Dellacherie, C. and Meyer, P.-A. (1978). Probabilities and Potential (North-Holland Math. Stud. 29 ), North-Holland, Amsterdam. [20] Dixit, A. K. and Pindyck, R. S. (1994). Investment Under Uncertainty . Princeton University Press. · Zbl 0800.90004 [21] El Karoui, N. and Karatzas, I. (1991). A new approach to the Skorohod problem, and its applications. Stoch. Stoch. Reports 34 , 57-82. (Correction: 36 (1991), 265.) · Zbl 0735.60046 [22] Ferrari, G. (2015). On an integral equation for the free-boundary of stochastic, irreversible investment problems. Ann. Appl. Prob. 25 , 150-176. · Zbl 1307.93455 [23] Karatzas, I. (1981). The monotone follower problem in stochastic decision theory. Appl. Math. Optimization 7 , 175-189. · Zbl 0438.93078 [24] Karatzas, I. and Shreve, S. E. (1984). Connections between optimal stopping and singular stochastic control I. Monotone follower problems. SIAM J. Control Optimization 22 , 856-877. · Zbl 0551.93078 [25] Kyprianou, A. E. (2006). Introductory Lectures on Fluctuations of Lévy Processes with Applications . Springer, Berlin. · Zbl 1104.60001 [26] Liang, J., Yang, M. and Jiang, L. (2013). A closed-form solution for the exercise strategy in real options model with a jump-diffusion process. SIAM J. Appl. Math. 73 , 549-571 · Zbl 1268.91168 [27] McDonald, R. and Siegel, D. (1986). The value of waiting to invest. Quart. J. Econom. 101 , 707-727. [28] Mordecki, E. (2002). Optimal stopping and perpetual options for Lévy processes. Finance Stoch. 6 , 473-493. · Zbl 1035.60038 [29] Mordecki, E. and Salminen, P. (2007). Optimal stopping of Hunt and Lévy processes. Stochastics 79 , 233-251. · Zbl 1114.60034 [30] Øksendal, A. (2000). Irreversible investment problems. Finance Stoch. 4 , 223-250. · Zbl 0957.60085 [31] Peskir, G. and Shiryaev, A. N. (2000). Sequential testing problems for Poisson processes. Ann. Statist. 28 , 837-859. · Zbl 1081.62546 [32] Peskir, G. and Shiryaev, A. (2006). Optimal stopping and free-boundary problems . Birkhäuser, Basel. · Zbl 1115.60001 [33] Pham, H. (2006). Explicit solution to an irreversible investment model with a stochastic production capacity. In From Stochastic Calculus to Mathematical Finance , Springer, Berlin, pp. 547-566. · Zbl 1103.93049 [34] Pindyck, R. S. (1988). Irreversible investment, capacity choice, and the value of the firm. Amer. Econom. Rev. 78 , 969-985. [35] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd edn. Springer, Berlin. · Zbl 0917.60006 [36] Riedel, F. and Su, X. (2011). On irreversible investment. Finance Stoch. 15 , 607-633. · Zbl 1303.91199 [37] Salminen, P. (2011). Optimal stopping, Appell polynomials, and Wiener-Hopf factorization. Stochastics 83 , 611-622. · Zbl 1248.60046 [38] Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions (Camb. Stud. Adv. Math. 68 ). Cambridge University Press. [39] Steg, J.-H. (2012). Irreversible investment in oligopoly. Finance Stoch. 16 , 207-224. · Zbl 1261.91009 [40] Topkis, D. M. (1978). Minimizing a submodular function on a lattice. Operat. Res. 26 , 305-321. · Zbl 0379.90089 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.