×

zbMATH — the first resource for mathematics

Differential symmetry breaking operators. II: Rankin-Cohen operators for symmetric pairs. (English) Zbl 1342.22029
In this second part of their study of differential symmetry breaking operators, the authors obtain new explicit formulae describing differential symmetry breaking operators for the six different complex geometries arising from semi-simple symmetric pairs of split rank one. It is explained why coefficients of orthogonal polynomials appear in three of the cases and why normal derivatives are symmetry breaking operators in the remaining three cases. The authors also study the problem of branching for Verma modules and explain the unconventional behavior of branching multiplicities at singular values of parameters.
For Part I see [the authors, ibid. 22, No. 2, 801-845 (2016; Zbl 1338.22006)].

MSC:
22E47 Representations of Lie and real algebraic groups: algebraic methods (Verma modules, etc.)
22E46 Semisimple Lie groups and their representations
11F55 Other groups and their modular and automorphic forms (several variables)
53C10 \(G\)-structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ban, K, On Rankin-Cohen-ibukiyama operators for automorphic forms of several variables, Comment. Math. Univ. St. Pauli, 55, 149-171, (2006) · Zbl 1137.11034
[2] Bernstein, IN; Gelfand, IM; Gelfand, SI, A certain category of \({\mathfrak{g}}\)-modules, Funkcional. Anal. i Prilozhen., 10, 1-8, (1976) · Zbl 0353.18013
[3] Bieliavsky, P; Tang, X; Yao, Y, Rankin-Cohen brackets and formal quantization, Adv. Math., 212, 293-314, (2007) · Zbl 1123.53049
[4] Choie, Y; Lee, MH, Notes on Rankin-Cohen brackets, Ramanujan J., 25, 141-147, (2011) · Zbl 1244.11039
[5] Cohen, H, Sums involving the values at negative integers of \(L\)-functions of quadratic characters, Math. Ann., 217, 271-285, (1975) · Zbl 0311.10030
[6] Cohen, P.B., Manin, Y., Zagier, D.: Automorphic pseudodifferential operators. In: Algebraic Aspects of Integrable Systems, vol. 26, pp. 17-47. Birkhäuser, Boston (1997) · Zbl 1055.11514
[7] Connes, A; Moscovici, H, Rankin-Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J., 4, 111-130, (2004) · Zbl 1122.11024
[8] Dijk van, G., Pevzner,M.: Ring structures for holomorphic discrete series and Rankin-Cohen brackets. J. Lie Theory 17, 283-305 (2007) · Zbl 1123.22009
[9] Eichler, M., Zagier, D.: The Theory of Jacobi Forms, vol. 55. Birkhäuser, Boston (1985) · Zbl 0554.10018
[10] Eholzer, W; Ibukiyama, T, Rankin-Cohen type differential operators for Siegel modular forms, Int. J. Math., 9, 443-463, (1998) · Zbl 0919.11037
[11] Gradechi, A, The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators, Adv. Math., 207, 484-531, (2006) · Zbl 1161.11331
[12] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vol. I. Based, in Part, on Notes Left by Harry Bateman, xxvi+302. McGraw-Hill Book Company, Inc., New York (1953) · Zbl 0910.22016
[13] Gordan, P.: Invariantentheorie. Teubner, Leipzig (1887) · JFM 19.0099.01
[14] Gundelfinger, S, Zur der binären formen, J. Reine Angew. Math., 100, 413-424, (1886) · JFM 19.0109.01
[15] Harris, M; Jakobsen, HP, Singular holomorphic representations and singular modular forms, Math. Ann., 259, 227-244, (1982) · Zbl 0466.32017
[16] Howe, R., Tan, E.: Non-abelian Harmonic Analysis. Applications of \(SL(2,{\mathbb{R}})\). Springer, New York (1992) · Zbl 0768.43001
[17] Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Amer. Math. Soc, Providence (1963)
[18] Ibukiyama, T; Kuzumaki, T; Ochiai, H, Holonomic systems of Gegenbauer type polynomials of matrix arguments related with Siegel modular forms, J. Math. Soc. Jpn., 64, 273-316, (2012) · Zbl 1272.11066
[19] Jakobsen, HP; Vergne, M, Restrictions and extensions of holomorphic representations, J. Funct. Anal., 34, 29-53, (1979) · Zbl 0433.22011
[20] Juhl, A.: Families of Conformally Covariant Differential Operators, \(Q\)-Curvature and Holography, vol. 275. Birkhäuser, Basel (2009) · Zbl 1177.53001
[21] Kobayashi, T, Discrete decomposability of the restriction of \(A_{{\mathfrak{q}}}(λ )\) with respect to reductive subgroups and its applications, Invent. Math., 117, 181-205, (1994) · Zbl 0826.22015
[22] Kobayashi, T, Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(λ )\) with respect to reductive subgroups II-micro-local analysis and asymptotic \(K\)-support, Ann. Math., 147, 709-729, (1998) · Zbl 0910.22016
[23] Kobayashi, T, Discrete decomposability of the restriction of \(A_{\mathfrak{q}}(λ )\) with respect to reductive subgroups III-restriction of harish-chandra modules and associated varieties, Invent. Math., 131, 229-256, (1998) · Zbl 0907.22016
[24] Kobayashi, T.: Multiplicity-Free Theorems of the Restrictions of Unitary Highest Weight Modules with Respect to Reductive Symmetric Pairs. In: Representation Theory and Automorphic Forms. Progr. Math., vol. 255, pp. 45-109. Birkhäuser, Boston (2008) · Zbl 1304.22013
[25] Kobayashi, T, Restrictions of generalized Verma modules to symmetric pairs, Transform. Groups, 17, 523-546, (2012) · Zbl 1257.22014
[26] Kobayashi, T., Ørsted, B., Somberg, P., Souček, V.: Branching laws for Verma modules and applications in parabolic geometry. Part I. Adv. Math. 285, 1796-1852 (2015) · Zbl 1327.53044
[27] Kobayashi, T; Kubo, T; Pevzner, M; Dobrev, V (ed.), Vector-valued covariant differential operators for the Möbius transformation, 67-86, (2015), Berlin
[28] Kobayashi, T., Pevzner, M.: Differential symmetry breaking operators. I. General theory and the F-method. Sel. Math. New Ser. (2015). doi:10.1007/s00029-15-0207-9 · Zbl 1338.22006
[29] Kobayashi, T., Speh, B.: Symmetry breaking for representations of rank one orthogonal groups. Mem. Am. Math. Soc. 238(1126), (2015). ISBN: 978-1-4704-1922-6. doi:10.1090/memo/1126. (Available also at arXiv:1310.3213.) · Zbl 1334.22015
[30] Kostant, B, On the existence and irreducibility of certain series of representations, Bull. Am. Math. Soc., 75, 627-642, (1969) · Zbl 0229.22026
[31] Kuznetsov, NV, A new class of identities for the Fourier coefficients of modular forms, Acta Arith., 27, 505-519, (1975) · Zbl 0302.42003
[32] Martin, F; Royer, E, Rankin-Cohen brackets on quasimodular forms, J. Ramanujan Math. Soc., 24, 213-233, (2009) · Zbl 1206.11052
[33] Molchanov, VF, Tensor products of unitary representations of the three-dimensional Lorentz group, Math. USSR Izv., 15, 113-143, (1980) · Zbl 0448.22010
[34] Olver, PJ; Sanders, JA, Transvectants, modular forms, and the Heisenberg algebra, Adv. Appl. Math., 25, 252-283, (2000) · Zbl 1041.11026
[35] Peng, L; Zhang, G, Tensor products of holomorphic representations and bilinear differential operators, J. Funct. Anal., 210, 171-192, (2004) · Zbl 1050.22020
[36] Pevzner, M, Rankin-Cohen brackets and associativity, Lett. Math. Phys., 85, 195-202, (2008) · Zbl 1167.53075
[37] Pevzner, M, Rankin-Cohen brackets and representations of conformal groups, Ann. Math. Blaise Pascal, 19, 455-484, (2012) · Zbl 1283.11072
[38] Rankin, RA, The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc., 20, 103-116, (1956) · Zbl 0072.08601
[39] Repka, J, Tensor products of holomorphic discrete series representations, Can. J. Math., 31, 836-844, (1979) · Zbl 0373.22006
[40] Schmid, W.: Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen. Invent. Math. 9, 61-80 (1969/1970) · Zbl 0219.32013
[41] Unterberger, A; Unterberger, J, Algebras of symbols and modular forms, J. Anal. Math., 68, 121-143, (1996) · Zbl 0857.43015
[42] Zagier, D, Modular forms and differential operators, Proc. Indian Acad. Sci. (Math. Sci.), 104, 57-75, (1994) · Zbl 0806.11022
[43] Zhang, G, Rankin-Cohen brackets, transvectants and covariant differential operators, Math. Z., 264, 513-519, (2010) · Zbl 1189.32013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.