×

Geodesics in Brownian surfaces (Brownian maps). (English. French summary) Zbl 1342.60043

Summary: We define a class a metric spaces which we call Brownian surfaces, arising as the scaling limits of random maps on general orientable surfaces with a boundary, and we study the geodesics from a uniformly chosen random point. These metric spaces generalize the well-known Brownian map and our results generalize the properties shown by Le Gall on geodesics in the latter space. We use a different approach based on two ingredients: we first study typical geodesics and then all geodesics by an “entrapment” strategy. In particular, we give geometrical characterizations of some subsets of interest, in terms of geodesics, boundary points and concatenations of geodesics forming a loop that is not homotopic to \(0\).

MSC:

60F17 Functional limit theorems; invariance principles
60D05 Geometric probability and stochastic geometry
60C05 Combinatorial probability
57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
05C80 Random graphs (graph-theoretic aspects)
05C12 Distance in graphs
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] C. Abraham. Rescaled bipartite planar maps converge to the Brownian map. Preprint, 2013. Available at . arXiv:1312.5959
[2] L. Addario-Berry and M. Albenque. The scaling limit of random simple triangulations and random simple quadrangulations. Preprint, 2013. Available at . arXiv:1306.5227 · Zbl 1349.00026
[3] J. Ambjørn and T. G. Budd. Trees and spatial topology change in causal dynamical triangulations. J. Phys. A 46 (31) (2013) 315201, 33. · Zbl 1273.81224
[4] E. G. Begle. Regular convergence. Duke Math. J. 11 (1944) 441-450. · Zbl 0061.39903
[5] J. Bertoin, L. Chaumont and J. Pitman. Path transformations of first passage bridges. Electron. Commun. Probab. 8 (2003) 155-166 (electronic). · Zbl 1061.60083
[6] J. Bettinelli. Scaling limits for random quadrangulations of positive genus. Electron. J. Probab. 15 (2010) 1594-1644. · Zbl 1226.60047
[7] J. Bettinelli. The topology of scaling limits of positive genus random quadrangulations. Ann. Probab. 40 (5) (2012) 1897-1944. · Zbl 1255.60048
[8] J. Bettinelli. Scaling limit of random planar quadrangulations with a boundary. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015) 432-477. · Zbl 1319.60067
[9] J. Bettinelli, E. Jacob and G. Miermont. The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection. Electron. J. Probab. 19 (2014) 1-16. · Zbl 1320.60088
[10] J. Bettinelli and G. Miermont. Compact Brownian surfaces I. Brownian disks. Preprint. Available at . arXiv:1507.0877 · Zbl 1373.60062
[11] J. Bettinelli and G. Miermont. Compact Brownian surfaces II. The general case. In preparation, 2016.
[12] P. Billingsley. Convergence of Probability Measures . Wiley, New York, 1968. · Zbl 0172.21201
[13] J. Bouttier, P. Di Francesco and E. Guitter. Planar maps as labeled mobiles. Electron. J. Combin. 11 (1) (2004), Research Paper 69, 27 pp. (electronic). · Zbl 1060.05045
[14] D. Burago, Y. Burago and S. Ivanov. A Course in Metric Geometry. Graduate Studies in Mathematics 33 . American Mathematical Society, Providence, RI, 2001. · Zbl 0981.51016
[15] G. Chapuy. The structure of unicellular maps, and a connection between maps of positive genus and planar labeled trees. Probab. Theory Related Fields 147 (3-4) (2010) 415-447. · Zbl 1195.60013
[16] G. Chapuy, M. Marcus and G. Schaeffer. A bijection for rooted maps on orientable surfaces. SIAM J. Discrete Math. 23 (3) (2009) 1587-1611. · Zbl 1207.05087
[17] P. Chassaing and G. Schaeffer. Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2) (2004) 161-212. · Zbl 1041.60008
[18] R. Cori and B. Vauquelin. Planar maps are well labeled trees. Canad. J. Math. 33 (5) (1981) 1023-1042. · Zbl 0415.05020
[19] N. Curien, J.-F. Le Gall and G. Miermont. The Brownian cactus I. Scaling limits of discrete cactuses. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2) (2013) 340-373. · Zbl 1275.60035
[20] T. Duquesne and J.-F. Le Gall. Random trees, Lévy processes and spatial branching processes. Astérisque 281 , vi+147 (2002). · Zbl 1037.60074
[21] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics 152 . Birkhäuser, Boston, MA, 1999. Based on the 1981 French original [MR0682063 (85e:53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates.
[22] J.-F. Le Gall. Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich . Birkhäuser Verlag, Basel, 1999. · Zbl 0938.60003
[23] J.-F. Le Gall. The topological structure of scaling limits of large planar maps. Invent. Math. 169 (3) (2007) 621-670. · Zbl 1132.60013
[24] J.-F. Le Gall. Geodesics in large planar maps and in the Brownian map. Acta Math. 205 (2) (2010) 287-360. · Zbl 1214.53036
[25] J.-F. Le Gall. Uniqueness and universality of the Brownian map. Ann. Probab. 41 (4) (2013) 2880-2960. · Zbl 1282.60014
[26] J.-F. Le Gall and G. Miermont. Scaling limits of random planar maps with large faces. Ann. Probab. 39 (1) (2011) 1-69. · Zbl 1204.05088
[27] J.-F. Le Gall and F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Geom. Funct. Anal. 18 (3) (2008) 893-918. · Zbl 1166.60006
[28] J.-F. Marckert and A. Mokkadem. Limit of normalized quadrangulations: The Brownian map. Ann. Probab. 34 (6) (2006) 2144-2202. · Zbl 1117.60038
[29] G. Miermont. On the sphericity of scaling limits of random planar quadrangulations. Electron. Commun. Probab. 13 (2008) 248-257. · Zbl 1193.60016
[30] G. Miermont. Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 (5) (2009) 725-781. · Zbl 1228.05118
[31] G. Miermont. The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210 (2) (2013) 319-401. · Zbl 1278.60124
[32] S. B. Myers. Connections between differential geometry and topology II. Closed surfaces. Duke Math. J. 2 (1) (1936) 95-102. · Zbl 0013.32201
[33] D. Poulalhon and G. Schaeffer. Optimal coding and sampling of triangulations. Algorithmica 46 (3-4) (2006) 505-527. · Zbl 1106.68114
[34] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion , 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293 . Springer, Berlin, 1999. · Zbl 0917.60006
[35] G. Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, Université de Bordeaux 1, 1998.
[36] G. T. Whyburn. On sequences and limiting sets. Fund. Math. 25 (1935) 408-426. · Zbl 0012.25003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.