Akashi, Fumiya; Liu, Yan; Taniguchi, Masanobu An empirical likelihood approach for symmetric \(\alpha\)-stable processes. (English) Zbl 1342.60071 Bernoulli 21, No. 4, 2093-2119 (2015). Summary: The empirical likelihood approach is one of the non-parametric statistical methods, which is applied to the hypothesis testing or construction of confidence regions for pivotal unknown quantities. This method has been applied to the case of independent identically distributed random variables and second order stationary processes. In recent years, we observe heavy-tailed data in many fields. To model such data suitably, we consider symmetric scalar and multivariate \(\alpha\)-stable linear processes generated by an infinite variance innovation sequence. We use a Whittle likelihood type estimating function in the empirical likelihood ratio function and derive the asymptotic distribution of the empirical likelihood ratio statistic for \(\alpha\)-stable linear processes. With the empirical likelihood statistic approach, the theory of estimation and testing for second order stationary processes is nicely extended to heavy-tailed data analyses, not straightforward, and applicable to a lot of financial statistical analyses. Cited in 7 Documents MSC: 60G52 Stable stochastic processes 62G05 Nonparametric estimation 62G10 Nonparametric hypothesis testing 62G15 Nonparametric tolerance and confidence regions 62G20 Asymptotic properties of nonparametric inference Keywords:\(\alpha\)-stable processes; empirical likelihood ratio; confidence regions; heavy tails; normalized power transfer function; self-normalized periodogram; Whittle likelihood PDFBibTeX XMLCite \textit{F. Akashi} et al., Bernoulli 21, No. 4, 2093--2119 (2015; Zbl 1342.60071) Full Text: DOI arXiv Euclid References: [1] Akashi, F., Liu, Y. and Taniguchi, M. (2014). Supplement to “An empirical likelihood approach for symmetric \(\alpha \)-stable processes.” . · Zbl 1342.60071 · doi:10.3150/14-BEJ636 [2] Bhansali, R.J. (1980). Autoregressive and window estimates of the inverse correlation function. Biometrika 67 551-566. · Zbl 0445.62102 · doi:10.1093/biomet/67.3.551 [3] Brillinger, D.R. (2001). Time Series. Classics in Applied Mathematics 36 . Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). Data analysis and theory, Reprint of the 1981 edition. · Zbl 0983.62056 · doi:10.1137/1.9780898719246 [4] Brockwell, P.J. and Davis, R.A. (1991). Time Series : Theory and Methods , 2nd ed. Springer Series in Statistics . New York: Springer. · Zbl 0709.62080 [5] Cleveland, W.S. (1972). The inverse autocorrelations of a time series and their applications. Technometrics 14 277-293. · Zbl 0276.62079 · doi:10.2307/1267420 [6] Davis, R. and Resnick, S. (1985). Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13 179-195. · Zbl 0562.60026 · doi:10.1214/aop/1176993074 [7] Davis, R. and Resnick, S. (1985). More limit theory for the sample correlation function of moving averages. Stochastic Process. Appl. 20 257-279. · Zbl 0572.62075 · doi:10.1016/0304-4149(85)90214-5 [8] Davis, R. and Resnick, S. (1986). Limit theory for the sample covariance and correlation functions of moving averages. Ann. Statist. 14 533-558. · Zbl 0605.62092 · doi:10.1214/aos/1176349937 [9] Drees, H., de Haan, L. and Resnick, S. (2000). How to make a Hill plot. Ann. Statist. 28 254-274. · Zbl 1106.62333 · doi:10.1214/aos/1016120372 [10] Fama, E.F. (1965). The behavior of stock-market prices. J. Bus. 38 34-105. [11] Hall, P. (1982). On some simple estimates of an exponent of regular variation. J. R. Stat. Soc. Ser. B Stat. Methodol. 44 37-42. · Zbl 0521.62024 [12] Hannan, E.J. (1970). Multiple Time Series . New York: Wiley. · Zbl 0211.49804 [13] Hsing, T. (1991). On tail index estimation using dependent data. Ann. Statist. 19 1547-1569. · Zbl 0738.62026 · doi:10.1214/aos/1176348261 [14] Klüppelberg, C. and Mikosch, T. (1993). Spectral estimates and stable processes. Stochastic Process. Appl. 47 323-344. · Zbl 0779.60023 · doi:10.1016/0304-4149(93)90021-U [15] Klüppelberg, C. and Mikosch, T. (1994). Some limit theory for the self-normalised periodogram of stable processes. Scand. J. Stat. 21 485-491. · Zbl 0809.62081 [16] Klüppelberg, C. and Mikosch, T. (1996). The integrated periodogram for stable processes. Ann. Statist. 24 1855-1879. · Zbl 0898.62116 · doi:10.1214/aos/1069362301 [17] Mandelbrot, B.B. (1963). New methods in statistical economics. J. Polit. Econ. 71 421-440. [18] Mikosch, T., Gadrich, T., Klüppelberg, C. and Adler, R.J. (1995). Parameter estimation for ARMA models with infinite variance innovations. Ann. Statist. 23 305-326. · Zbl 0822.62076 · doi:10.1214/aos/1176324469 [19] Mikosch, T., Resnick, S. and Samorodnitsky, G. (2000). The maximum of the periodogram for a heavy-tailed sequence. Ann. Probab. 28 885-908. · Zbl 1044.62097 · doi:10.1214/aop/1019160264 [20] Monti, A.C. (1997). Empirical likelihood confidence regions in time series models. Biometrika 84 395-405. · Zbl 0882.62082 · doi:10.1093/biomet/84.2.395 [21] Nolan, J.P. (2015). Stable Distributions - Models for Heavy Tailed Data . Boston: Birkhäuser. · Zbl 0971.62008 [22] Ogata, H. and Taniguchi, M. (2010). An empirical likelihood approach for non-Gaussian vector stationary processes and its application to minimum contrast estimation. Aust. N. Z. J. Stat. 52 451-468. · Zbl 1373.62452 [23] Owen, A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237-249. · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237 [24] Petrov, V.V. (1975). Sums of Independent Random Variables . New York: Springer. · Zbl 0322.60043 [25] Resnick, S. and Stărică, C. (1998). Tail index estimation for dependent data. Ann. Appl. Probab. 8 1156-1183. · Zbl 0942.60037 · doi:10.1214/aoap/1028903376 [26] Resnick, S.I. and Stărică, C. (1996). Asymptotic behavior of Hill’s estimator for autoregressive data. Stoch. Models 13 703-723. [27] Rosiński, J. and Woyczyński, W.A. (1987). Multilinear forms in Pareto-like random variables and product random measures. Colloq. Math. 51 303-313. · Zbl 0644.60016 [28] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes. Stochastic Modeling. Stochastic Models with Infinite Variance . New York: Chapman and Hall. · Zbl 0925.60027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.