×

zbMATH — the first resource for mathematics

\(\mathcal{N}=1 \) super sinh-Gordon model in the half line: breather solutions. (English) Zbl 1342.81534
Summary: We examine the \(N = 1\) super sinh-Gordon (SShG) model restricted into the half line through a reduction from the defect SShG model. The Bäcklund transformations are employed to generate one-, two- and three-soliton solutions as well as a class of breathers solution for this model. The parameters of such classical solutions are shown to satisfy some contraints in order to preserve both integrability and supersymmetry properties of the original bulk theory. Additionally, previous results are recovered when performing the purely bosonic limit.

MSC:
81T60 Supersymmetric field theories in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Sklyanin, E., Boundary conditions for integrable equations, Funct. Anal. Appl., 21, 164, (1987) · Zbl 0643.35093
[2] Sklyanin, E., Boundary conditions for integrable quantum systems, J. Phys., A 21, 2375, (1988) · Zbl 0685.58058
[3] Tarasov, VO, The integrable initial-boundary value problem on a semiline: nonlinear schrodinger and sine-Gordon equations, Inverse Probl., 7, 435, (1991) · Zbl 0732.35089
[4] Habibullin, IT, The Bäcklund transformation and integrable initial boundary value problems, Math. Notes, 49, 18, (1991)
[5] Habibullin, IT, Integrable initial-boundary-value problems, Theor. Math. Phys., 86, 28, (1991) · Zbl 0728.35114
[6] Habibullin, IT, Sine-Gordon equation on the semi-axis, Theor. Math. Phys., 114, 90, (1998) · Zbl 0946.35089
[7] Ghoshal, S.; Zamolodchikov, AB, Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys., A 9, 3841, (1994) · Zbl 0985.81714
[8] Bowcock, P.; Corrigan, E.; Dorey, P.; Rietdijk, R., Classically integrable boundary conditions for affine Toda field theories, Nucl. Phys., B 445, 469, (1995) · Zbl 1009.81564
[9] Saleur, H.; Skorik, S.; Warner, N., The boundary sine-Gordon theory: classical and semiclassical analysis, Nucl. Phys., B 441, 421, (1995) · Zbl 0990.81705
[10] Cardy, JL, Conformal invariance and surface critical behavior, Nucl. Phys., B 240, 514, (1984)
[11] Inami, T.; Odake, S.; Zhang, Y-Z, Supersymmetric extension of the sine-Gordon theory with integrable boundary interactions, Phys. Lett., B 359, 118, (1995)
[12] Nepomechie, RI, The boundary supersymmetric sine-Gordon model revisited, Phys. Lett., B 509, 183, (2001) · Zbl 0977.81151
[13] Bowcock, P.; Corrigan, E.; Zambon, C., Classically integrable field theories with defects, Int. J. Mod. Phys., A 19S, 82, (2004) · Zbl 1080.81015
[14] Avan, J.; Doikou, A., The sine-Gordon model with integrable defects revisited, JHEP, 11, 008, (2012)
[15] Avan, J.; Doikou, A., The sine-Gordon model in the presence of defects, J. Phys. Conf. Ser., 411, 012003, (2013)
[16] Habibullin, I.; Kundu, A., Quantum and classical integrable sine-Gordon model with defect, Nucl. Phys., B 795, 549, (2008) · Zbl 1219.81189
[17] Gomes, J.; Ymai, L.; Zimerman, A., Classical integrable super sinh-Gordon equation with defects, J. Phys., A 39, 7471, (2006) · Zbl 1099.35113
[18] Gomes, J.; Ymai, L.; Zimerman, A., Integrablility of a classical \(N\) = 2 super sinh-Gordon model with jump defects, JHEP, 03, 001, (2008)
[19] A. Aguirre, J. Gomes, L. Ymai and A. Zimerman, Thirring model with jump defect, PoS(ISFTG)031 [arXiv:0910.2888] [INSPIRE]. · Zbl 1294.81076
[20] Aguirre, A.; Gomes, J.; Ymai, L.; Zimerman, A., Grassmannian and bosonic Thirring models with jump defects, JHEP, 02, 017, (2011) · Zbl 1294.81076
[21] Aguirre, A.; Araujo, T.; Gomes, J.; Zimerman, A., Type-II Bäcklund transformations via gauge transformations, JHEP, 12, 056, (2011) · Zbl 1306.81055
[22] Aguirre, AR, Inverse scattering approach for massive Thirring models with integrable type-II defects, J. Phys., A 45, 205205, (2012) · Zbl 1247.81560
[23] Corrigan, E.; Delius, G., Boundary breathers in the sinh-Gordon model, J. Phys., A 32, 8601, (1999) · Zbl 0945.81023
[24] Chaichian, M.; Kulish, P., On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations, Phys. Lett., B 78, 413, (1978)
[25] Deleonardis, R.; Trullinger, S.; Wallis, R., Theory of boundary effects on sine-Gordon solitons, J. Appl. Phys., 51, 1211, (1980)
[26] Gomes, J.; Ymai, L.; Zimerman, A., Permutability of Bäcklund transformation for \(N\) = 1 supersymmetric sinh-Gordon, Phys. Lett., A 373, 1401, (2009) · Zbl 1228.35226
[27] Bajnok, Z.; Palla, L.; Takács, G.; Toth, G., The spectrum of boundary states in sine-Gordon model with integrable boundary conditions, Nucl. Phys., B 622, 548, (2002) · Zbl 0983.81044
[28] Gomes, J.; Ymai, L.; Zimerman, A., Permutability of Bäcklund transformations for \(N\) = 2 supersymmetric sine-Gordon, J. Math. Phys., 51, 033501, (2010) · Zbl 1309.81100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.