×

Existence of multiple positive solutions for third-order \(p\)-Laplacian functional dynamic equations on time scales. (English) Zbl 1343.34209

Summary: In this paper, we consider a class of boundary value problems for third-order \(p\)-Laplacian functional dynamic equations on time scales, some existence criteria of at least three positive solutions are established. The main tool used in this paper is the fixed point theorem due to R. I. Avery and A. C. Peterson [Comput. Math. Appl. 42, No. 3–5, 313–322 (2001; Zbl 1005.47051)].

MSC:

34N05 Dynamic equations on time scales or measure chains
34B15 Nonlinear boundary value problems for ordinary differential equations

Citations:

Zbl 1005.47051
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Guan W: Three positive solutions forp-Laplacian functional dynamic equations on time scales.Electron. J. Qual. Theory Differ. Equ. 2008, 28:1-7. http://www.math.u-szeged.hu/ejqtde/ · Zbl 1183.34141
[2] Kaufmann ER, Raffoul YN: Positive solutions for a nonlinear functional dynamic equation on a time scale.Nonlinear Anal. 2005, 62:1267-1276. · Zbl 1090.34054 · doi:10.1016/j.na.2005.04.031
[3] Song CX, Xiao CT: Positive solutions forp-Laplacian functional dynamic equations on time scales.Nonlinear Anal. 2007, 66:1989-1998. · Zbl 1117.39007 · doi:10.1016/j.na.2006.02.036
[4] Song CX, Weng PX: Multiple positive solutions forp-Laplacian functional dynamic equations on time scales.Nonlinear Anal. 2008, 68:208-215. · Zbl 1133.34353 · doi:10.1016/j.na.2006.10.043
[5] Song, CX; Gao, XJ, Positive solutions for third-order p-Laplacian functional dynamic equations on time scales, No. 2011 (2011) · Zbl 1210.34138
[6] Wang DB: Three positive solutions forp-Laplacian functional dynamic equations on time scales.Electron. J. Differ. Equ. 2007,2007(95):1-9. · Zbl 1137.39007
[7] Wang DB, Guan W: Multiple positive solutions forp-Laplacian functional dynamic equations on time scales.Taiwan. J. Math. 2008, 12:2327-2340. · Zbl 1185.34148
[8] Wang, DB; Guan, W., Multiple positive solutions for third-order p-Laplacian functional dynamic equations on time scales (2014) · Zbl 1343.34209
[9] Avery RI, Chyan CJ, Henderson J: Twin solutions of boundary value problems for ordinary differential equations and finite difference equations.Comput. Math. Appl. 2001, 42:695-704. · Zbl 1006.34022 · doi:10.1016/S0898-1221(01)00188-2
[10] Leggett RW, Williams LR: Multiple positive fixed points of nonlinear operators on ordered Banach spaces.Indiana Univ. Math. J. 1979, 28:673-688. · Zbl 0421.47033 · doi:10.1512/iumj.1979.28.28046
[11] Avery RI, Peterson AC: Three positive fixed points of nonlinear operators on ordered Banach spaces.Comput. Math. Appl. 2001, 42:313-322. · Zbl 1005.47051 · doi:10.1016/S0898-1221(01)00156-0
[12] Hilger S: Analysis on measure chains - a unified approach to continuous and discrete calculus.Results Math. 1990, 18:18-56. · Zbl 0722.39001 · doi:10.1007/BF03323153
[13] Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001. · Zbl 0978.39001 · doi:10.1007/978-1-4612-0201-1
[14] Bohner M, Peterson A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston; 2003. · Zbl 1025.34001 · doi:10.1007/978-0-8176-8230-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.