Zerouali, E. H.; Alhomsi, W.; Hachadi, H.; Youssfi, E. H. Hankel operators with anti-meromorphic symbols. (English) Zbl 1343.47041 Ann. Funct. Anal. 6, No. 2, 143-161 (2015). The authors of the article under review study Hankel operators on spaces of holomorphic functions in \({\mathbb C}\setminus\{0\}\) that belong to \(L^2(\mu_m)\), where \[ d\mu_m(z)=e^{-(|z|^m+|z|^{-m})}dA(z). \] They study the properties of boundedness, compactness and Schatten-von Neumann class membership. Reviewer: Vladimir V. Peller (East Lansing) MSC: 47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators 47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.) Keywords:Hankel operators; Hilbert spaces; strong moment problem; Laurent polynomials PDF BibTeX XML Cite \textit{E. H. Zerouali} et al., Ann. Funct. Anal. 6, No. 2, 143--161 (2015; Zbl 1343.47041) Full Text: DOI Euclid OpenURL