Balan, Raluca M.; Conus, Daniel Intermittency for the wave and heat equations with fractional noise in time. (English) Zbl 1343.60081 Ann. Probab. 44, No. 2, 1488-1534 (2016). The authors consider stochastic wave (SWE) and heat (SHE) equations \[ u_{tt}=\Delta u+u\dot W,\,u(0)=u_0,\,u_t(0)=v_0,\text{ resp. }u_t=\frac 12\Delta u+u\dot W,\,u(0)=u_0 \] on \(\mathbb R^d\), where the Gaussian noise \(\dot W\) is homogeneous in space (with spatial covariance kernel \(f\)) and behaves in time like a fractional Brownian motion with Hurst index \(H>1/2\), and the initial conditions \(u_0\), \(v_0\) are non-negative constants. The dimension \(d\) is restricted to \(d\leq 3\) in the case of the SWE. The spatial covariance kernel \(f\) of \(\dot W\) may be a bounded function, the Riesz kernel, a covariance of a fractional Brownian sheet or a Dirac measure (if \(d=1\)). The authors prove the existence of mild solutions (via the Malliavin calculus), uniqueness of solutions (except for the case of the SWE in \(\mathbb R^3\)), upper estimates for \(\mathbb E\) \(|u(t,x)|^p\) for \(p\geq 2\), lower estimates for \(\mathbb E\) \(|u(t,x)|^2\) and a Feyman-Kac-type representation for the second moment of solutions to the SWE. Reviewer: Martin Ondreját (Praha) Cited in 20 Documents MSC: 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 60H07 Stochastic calculus of variations and the Malliavin calculus 60G22 Fractional processes, including fractional Brownian motion Keywords:stochastic heat equation; stochastic wave equation; fractional Brownian motion; Malliavin calculus; intermittency PDF BibTeX XML Cite \textit{R. M. Balan} and \textit{D. Conus}, Ann. Probab. 44, No. 2, 1488--1534 (2016; Zbl 1343.60081) Full Text: DOI arXiv Euclid OpenURL References: [1] Alòs, E. and Nualart, D. (2003). Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep. 75 129-152. · Zbl 1028.60048 [2] Balan, R. M. (2009). A note on a Fenyman-Kac-type formula. Electron. Commun. Probab. 14 252-260. · Zbl 1190.60049 [3] Balan, R. M. (2012). The stochastic wave equation with multiplicative fractional noise: A Malliavin calculus approach. Potential Anal. 36 1-34. · Zbl 1231.60058 [4] Balan, R. M. (2012). Linear SPDEs driven by stationary random distributions. J. Fourier Anal. Appl. 18 1113-1145. · Zbl 1266.60110 [5] Balan, R. M. and Conus, D. (2014). A note on intermittency for the fractional heat equation. Statist. Probab. Lett. 95 6-14. · Zbl 1300.60077 [6] Balan, R. M. and Tudor, C. A. (2010). Stochastic heat equation with multiplicative fractional-colored noise. J. Theoret. Probab. 23 834-870. · Zbl 1203.60078 [7] Balan, R. M. and Tudor, C. A. (2010). The stochastic wave equation with fractional noise: A random field approach. Stochastic Process. Appl. 120 2468-2494. · Zbl 1202.60095 [8] Balázs, M., Quastel, J. and Seppäläinen, T. (2011). Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Amer. Math. Soc. 24 683-708. · Zbl 1227.60083 [9] Bertini, L. and Cancrini, N. (1995). The stochastic heat equation: Feynman-Kac formula and intermittence. J. Stat. Phys. 78 1377-1401. · Zbl 1080.60508 [10] Caithamer, P. (2005). The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise. Stoch. Dyn. 5 45-64. · Zbl 1083.60053 [11] Carmona, R. A. and Molchanov, S. A. (1994). Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 viii+125. · Zbl 0925.35074 [12] Chen, L. and Dalang, R. C. (2015). Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43 3006-3051. · Zbl 1338.60155 [13] Chen, X. (2016). Spatial asymptotics for the parabolic Anderson models with generalized times-space Gaussian noise. Ann. Probab. · Zbl 1348.60092 [14] Chen, X., Hu, Y. and Song, J. (2014). Feynman-Kac formula for fractional heat equation driven by fractional white noise. Preprint. Available at . arXiv:1203.0477 [15] Chen, X., Hu, Y., Song, J. and Xing, F. (2016). Exponential asymptotics for time-space Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat. 51 1529-1561. · Zbl 1337.60201 [16] Conus, D. and Dalang, R. C. (2008). The non-linear stochastic wave equation in high dimensions. Electron. J. Probab. 13 629-670. · Zbl 1187.60049 [17] Conus, D., Joseph, M. and Khoshnevisan, D. (2013). On the chaotic character of the stochastic heat equation, before the onset of intermitttency. Ann. Probab. 41 2225-2260. · Zbl 1286.60060 [18] Conus, D., Joseph, M., Khoshnevisan, D. and Shiu, S.-Y. (2013). Intermittency and chaos for a nonlinear stochastic wave equation in dimension 1. In Malliavin Calculus and Stochastic Analysis. Springer Proc. Math. Stat. 34 251-279. Springer, New York. · Zbl 1274.60198 [19] Conus, D., Joseph, M., Khoshnevisan, D. and Shiu, S.-Y. (2013). On the chaotic character of the stochastic heat equation, II. Probab. Theory Related Fields 156 483-533. · Zbl 1286.60061 [20] Conus, D. and Khoshnevisan, D. (2012). On the existence and position of the farthest peaks of a family of stochastic heat and wave equations. Probab. Theory Related Fields 152 681-701. · Zbl 1251.60051 [21] Dalang, R. C. (1999). Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s. Electron. J. Probab. 4 29 pp. (electronic). · Zbl 0986.60053 [22] Dalang, R. C. and Frangos, N. E. (1998). The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 187-212. · Zbl 0938.60046 [23] Dalang, R. C., Khohsnevisan, D., Mueller, C., Nualart, D. and Xiao, Y. (2006). A Minicourse in Stochastic Partial Differential Equations. Lecture Notes in Math. 1962 . Springer, Berlin. [24] Dalang, R. C. and Mueller, C. (2003). Some non-linear S.P.D.E.’s that are second order in time. Electron. J. Probab. 8 21 pp. (electronic). · Zbl 1013.60044 [25] Dalang, R. C. and Mueller, C. (2009). Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat. 45 1150-1164. · Zbl 1196.60116 [26] Dalang, R. C., Mueller, C. and Tribe, R. (2008). A Feynman-Kac-type formula for the deterministic and stochastic wave equations and other P.D.E.’s. Trans. Amer. Math. Soc. 360 4681-4703. · Zbl 1149.60040 [27] Dalang, R. C. and Sanz-Solé, M. (2009). Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three. Mem. Amer. Math. Soc. 199 vi+70. · Zbl 1214.60028 [28] Foondun, M. and Khoshnevisan, D. (2009). Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 548-568. · Zbl 1190.60051 [29] Foondun, M. and Khoshnevisan, D. (2013). On the stochastic heat equation with spatially-colored random forcing. Trans. Amer. Math. Soc. 365 409-458. · Zbl 1274.60202 [30] Gerhold, S. (2012). Asymptotics for a variant of the Mittag-Leffler function. Integral Transforms Spec. Funct. 23 397-403. · Zbl 1257.33050 [31] Hairer, M. (2013). Solving the KPZ equation. Ann. of Math. (2) 178 559-664. · Zbl 1281.60060 [32] Hu, Y. (2001). Heat equations with fractional white noise potentials. Appl. Math. Optim. 43 221-243. · Zbl 0993.60065 [33] Hu, Y., Huang, J., Nualart, D. and Tindel, S. (2014). Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Preprint. Available at . arXiv:1402.2618 · Zbl 1322.60113 [34] Hu, Y., Lu, F. and Nualart, D. (2012). Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter \(H<1/2\). Ann. Probab. 40 1041-1068. · Zbl 1253.60074 [35] Hu, Y. and Nualart, D. (2009). Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143 285-328. · Zbl 1152.60331 [36] Hu, Y., Nualart, D. and Song, J. (2011). Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39 291-326. · Zbl 1210.60056 [37] Kallenberg, O. (1983). Random Measures , 3rd ed. Academic Press, London. · Zbl 0345.60032 [38] Kardar, M., Parisi, G. and Zhang, Y.-C. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 889-892. · Zbl 1101.82329 [39] Li, Y.-C. (2006). A note on an identity of the gamma function and Stirling’s formula. Real Anal. Exchange 32 267-271. · Zbl 1200.33004 [40] Memin, J., Mishura, Y. and Valkeila, E. (2001). Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions. Statist. Probab. Lett. 55 421-430. · Zbl 1002.60030 [41] Millet, A. and Sanz-Solé, M. (1999). A stochastic wave equation in two space dimension: Smoothness of the law. Ann. Probab. 27 803-844. · Zbl 0944.60067 [42] Nualart, D. (1998). Analysis on Wiener space and anticipating stochastic calculus. In Lectures on Probability Theory and Statistics ( Saint-Flour , 1995). Lecture Notes in Math. 1690 123-227. Springer, Berlin. · Zbl 0915.60062 [43] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Springer, Berlin. · Zbl 1099.60003 [44] Nualart, D. and Quer-Sardanyons, L. (2007). Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal. 27 281-299. · Zbl 1133.60029 [45] Quer-Sardanyons, L. and Sanz-Solé, M. (2004). Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation. J. Funct. Anal. 206 1-32. · Zbl 1039.60054 [46] Quer-Sardanyons, L. and Tindel, S. (2007). The 1-d stochastic wave equation driven by a fractional Brownian sheet. Stochastic Process. Appl. 117 1448-1472. · Zbl 1123.60049 [47] Resnick, S. I. (2007). Heavy-Tail Phenomena : Probabilistic and Statistical Modeling . Springer, New York. · Zbl 1152.62029 [48] Sanz-Solé, M. and Sarrà, M. (2002). Hölder continuity for the stochastic heat equation with spatially correlated noise. In Seminar on Stochastic Analysis , Random Fields and Applications , III ( Ascona , 1999). Progress in Probability 52 259-268. Birkhäuser, Basel. [49] Song, J. (2012). Asymptotic behavior of the solution of heat equation driven by fractional white noise. Statist. Probab. Lett. 82 614-620. · Zbl 1239.60061 [50] Stein, E. M. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series 30 . Princeton Univ. Press, Princeton, NJ. · Zbl 0207.13501 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.