×

zbMATH — the first resource for mathematics

“Triangular” extremal dilatonic dyons. (English) Zbl 1343.83037
Summary: Explicit dyonic solutions in four-dimensional Einstein-Maxwell-dilaton theory are known only for three particular values of the dilaton coupling constant: \(a=0,1,\sqrt{3}\). However, numerical evidence was presented on existence of dyons admitting an extremal limit in theories with more general sequence of dilaton couplings \(a=\sqrt{n(n+1)/2}\) labeled by an integer {\(n\). Apart from the lower members \(n=0,1,2\), this family of theories does not have motivation from supergravity/string theory, and analytical origin of the above sequence remained unclear so far. We fill the gap showing that this formula follows from analyticity of the dilaton function at the \(\mathrm{AdS}_2 \times S^2\) event horizon of the extremal dyonic black hole, with \(n\) being the leading dilaton power in the Taylor expansion. We also derive generalization of this rule for asymptotically anti-de Sitter dyonic black holes with spherical, planar and hyperbolic topology of the horizon.}

MSC:
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83E50 Supergravity
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Shapere, A. D.; Trivedi, S.; Wilczek, F., Mod. Phys. Lett. A, 6, 2677, (1991)
[2] Galtsov, D. V.; Kechkin, O. V., Phys. Rev. D, 50, 7394, (1994)
[3] Gibbons, G. W., Nucl. Phys. B, 207, 337, (1982)
[4] Gibbons, G. W.; Maeda, K.-i., Nucl. Phys. B, 298, 741, (1988)
[5] Garfinkle, D.; Horowitz, G. T.; Strominger, A.; Garfinkle, D.; Horowitz, G. T.; Strominger, A., Phys. Rev. D, Phys. Rev. D, 45, 3888, (1992), (Erratum)
[6] Gibbons, G. W.; Wiltshire, D. L.; Gibbons, G. W.; Wiltshire, D. L., Ann. Phys., Ann. Phys., 176, 393, (1987), (Erratum)
[7] Chow, D. D.K.; Compere, G., Phys. Rev. D, 90, 2, 025029, (2014)
[8] Chow, D. D.K.; Compere, G., Phys. Rev. D, 89, 6, 065003, (2014)
[9] Clément, G., Phys. Lett. A, 118, 11, (1986)
[10] Rasheed, D., Nucl. Phys. B, 454, 379, (1995)
[11] Sen, A., Phys. Rev. Lett., 69, 1006, (1992)
[12] Galtsov, D. V.; Garcia, A. A.; Kechkin, O. V., Class. Quantum Gravity, 12, 2887, (1995)
[13] Poletti, S. J.; Twamley, J.; Wiltshire, D. L.; Poletti, S. J.; Twamley, J.; Wiltshire, D. L., Class. Quantum Gravity, Class. Quantum Gravity, 12, 2355, (1995), (Erratum)
[14] Chen, C.-M.; Gal’tsov, D. V.; Orlov, D. G., Phys. Rev. D, 78, 104013, (2008)
[15] Gibbons, G. W.; Kastor, D.; London, L. A.J.; Townsend, P. K.; Traschen, J. H., Nucl. Phys. B, 416, 850, (1994)
[16] Nozawa, M., Class. Quantum Gravity, 28, 175013, (2011) · Zbl 1225.83069
[17] Charmousis, C.; Gouteraux, B.; Kim, B. S.; Kiritsis, E.; Meyer, R., J. High Energy Phys., 1011, 151, (2010)
[18] Wiltshire, D. L., J. Aust. Math. Soc. Ser. B, Appl. Math, 41, 198, (1999)
[19] Poletti, S. J.; Twamley, J.; Wiltshire, D. L., Phys. Rev. D, 51, 5720, (1995)
[20] Horne, J. H.; Horowitz, G. T., Nucl. Phys. B, 399, 169-196, (1993)
[21] Charmousis, Ch., Introduction to anti de Sitter black holes, (Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence, Lecture Notes in Physics, vol. 828, (2011), Springer-Verlag Berlin, Heidelberg), 3-26 · Zbl 1246.83005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.