Abért, Miklós; Glasner, Yair; Virág, Bálint Kesten’s theorem for invariant random subgroups. (English) Zbl 1344.20061 Duke Math. J. 163, No. 3, 465-488 (2014). Summary: An invariant random subgroup of the countable group \(\Gamma\) is a random subgroup of \(\Gamma\) whose distribution is invariant under conjugation by all elements of \(\Gamma\). We prove that for a nonamenable invariant random subgroup \(H\), the spectral radius of every finitely supported random walk on \(\Gamma\) is strictly less than the spectral radius of the corresponding random walk on \(\Gamma/H\). This generalizes a result of Kesten who proved this for normal subgroups. As a byproduct, we show that, for a Cayley graph \(G\) of a linear group with no amenable normal subgroups, any sequence of finite quotients of \(G\) that spectrally approximates \(G\) converges to \(G\) in Benjamini-Schramm convergence. In particular, this implies that infinite sequences of finite \(d\)-regular Ramanujan-Schreier graphs have essentially large girth. Cited in 4 ReviewsCited in 53 Documents MSC: 20F69 Asymptotic properties of groups 22D40 Ergodic theory on groups 05C81 Random walks on graphs 60G50 Sums of independent random variables; random walks Keywords:countable groups; nonamenable invariant random subgroups; finitely supported random walks; spectral radii; Cayley graphs of linear groups; Ramanujan-Schreier graphs PDF BibTeX XML Cite \textit{M. Abért} et al., Duke Math. J. 163, No. 3, 465--488 (2014; Zbl 1344.20061) Full Text: DOI arXiv Euclid Link OpenURL References: [1] M. Abért, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, and I. Samet, On the growth of Betti numbers of locally symmetric spaces , C. R. Math. Acad. Sci. Paris 349 (2011), 831-835. · Zbl 1223.53039 [2] M. Abért, Y. Glasner, and B. Virág, The measurable Kesten theorem , preprint, [math.PR]. 1111.2080v2 · Zbl 1339.05365 [3] D. Aldous and R. Lyons, Processes on unimodular random networks , Electron. J. Probab. 12 (2007), 1454-1508. · Zbl 1131.60003 [4] I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs , Electron. J. Probab. 6 (2001), 13 pp. · Zbl 1010.82021 [5] N. Bergeron and D. Gaboriau, Asymptotique des nombres de Betti, invariants \(l^{2}\) et laminations , Comment. Math. Helv. 79 (2004), 362-395. · Zbl 1061.55005 [6] A. Borel, Linear Algebraic Groups , 2nd ed., Grad. Texts in Math. 126 , Springer, New York, 1991. · Zbl 0726.20030 [7] C. Chabauty, Limite d’ensembles et géométrie des nombres , Bull. Soc. Math. France 78 (1950), 143-151. · Zbl 0039.04101 [8] J. Friedman, “A proof of Alon’s second eigenvalue conjecture” in Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing (San Diego, 2003) , ACM, New York, 2003, 720-724. · Zbl 1192.05087 [9] Y. Glasner, Invariant random subgroups of linear groups , in preparation. · Zbl 1371.22017 [10] F. P. Greenleaf, Invariant Means on Topological Groups and their Applications , Van Nostrand Mathematical Studies 16 , Van Nostrand Reinhold, New York, 1969. · Zbl 0174.19001 [11] R. I. Grigorchuk, “Symmetrical random walks on discrete groups” in Multicomponent Random Systems , Adv. Probab. Related Topics 6 , Dekker, New York, 1980, 285-325. · Zbl 0475.60007 [12] H. Kesten, Full Banach mean values on countable groups , Math. Scand. 7 (1959), 146-156. · Zbl 0092.26704 [13] H. Kesten, Symmetric random walks on groups , Trans. Amer. Math. Soc. 92 (1959), 336-354. · Zbl 0092.33503 [14] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs , Combinatorica 8 (1988), 261-277. · Zbl 0661.05035 [15] G. A. Margulis, Finiteness of quotient groups of discrete subgroups (in Russian), Funktsional. Anal. i Prilozhen. 13 , no. 3 (1979), 28-39; English translation in Funct. Anal. Appl. 13 , no. 3 (1979), 178-187. · Zbl 0423.22015 [16] M. Morgenstern, Existence and explicit constructions of \(q+1\) regular Ramanujan graphs for every prime power \(q\) , J. Combin. Theory Ser. B 62 (1994), 44-62. · Zbl 0814.68098 [17] A. Nilli, On the second eigenvalue of a graph , Discrete Math. 91 (1991), 207-210. · Zbl 0771.05064 [18] R. Ortner and W. Woess, Non-backtracking random walks and cogrowth of graphs , Canad. J. Math. 59 (2007), 828-844. · Zbl 1123.05081 [19] W. L. Paschke, Lower bound for the norm of a vertex-transitive graph , Math. Z. 213 (1993), 225-239. · Zbl 0798.05036 [20] G. Stuck and R. J. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups , Ann. of Math. (2) 139 (1994), 723-747. · Zbl 0836.22018 [21] J. Tits, Free subgroups in linear groups , J. Algebra 20 (1972), 250-270. · Zbl 0236.20032 [22] A. M. Vershik, Totally nonfree actions and the infinite symmetric group , Mosc. Math. J. 12 (2012), 193-212. · Zbl 1294.37004 [23] B. A. F. Wehrfritz, Infinite Linear Groups: An Account of the Group-theoretic Properties of Infinite Groups of Matrices , Ergeb. Math. Grenzgeb. (3) 76 , Springer, New York, 1973. xiv+229 pp. · Zbl 0261.20038 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.