Baur, Erich; Bolthausen, Erwin Exit laws from large balls of (an)isotropic random walks in random environment. (English) Zbl 1344.60098 Ann. Probab. 43, No. 6, 2859-2948 (2015). Authors’ abstract: We study exit laws from large balls in \(\mathbb{Z}^{d},d\geq 3\), of random walks in an i.i.d. random environment that is a small perturbation of the environment corresponding to a simple random walk. Under a centering condition on the measure governing the environment, we prove that the exit laws are close to those of a symmetric random walk, which we identify as a perturbed simple random walk. We obtain bounds on total variation distances as well as local results comparing exit probabilities on boundary segments. As an application, we prove transience of the random walks in random environments. Our work includes the results on isotropic random walks in random environments of [the second author and O. Zeitouni, Probab. Theory Relat. Fields 138, No. 3–4, 581–645 (2007; Zbl 1126.60088)]. Since several proofs in [loc. cit.] were incomplete, a somewhat different approach was given in the first author’s thesis [Long-time behavior of random walks in random environment. Zürich: Universität Zürich (PhD Thesis) (2013)]. Here, we extend this approach to certain anisotropic walks and provide a further step towards a fully perturbative theory of random walks in random environments. Reviewer: Marius Iosifescu (Bucureşti) Cited in 5 Documents MSC: 60K37 Processes in random environments 60G50 Sums of independent random variables; random walks 82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics Keywords:random walks; random environments; exit measure; perturbative regime; nonballistic behaviour Citations:Zbl 1126.60088 PDFBibTeX XMLCite \textit{E. Baur} and \textit{E. Bolthausen}, Ann. Probab. 43, No. 6, 2859--2948 (2015; Zbl 1344.60098) Full Text: DOI arXiv Euclid References: [1] Baur, E. (2013). Long-time behavior of random walks in random environment. Part of the Ph.D. thesis, Zürich Univ. Available at . arXiv:1309.3419 [2] Berger, N. (2012). Slowdown estimates for ballistic random walk in random environment. J. Eur. Math. Soc. ( JEMS ) 14 127-174. · Zbl 1247.60138 · doi:10.4171/JEMS/298 [3] Berger, N. and Deuschel, J.-D. (2014). A quenched invariance principle for non-elliptic random walk in i.i.d. balanced random environment. Probab. Theory Related Fields 158 91-126. · Zbl 1356.60175 · doi:10.1007/s00440-012-0478-4 [4] Berger, N., Drewitz, A. and Ramírez, A. (2012). Effective polynomial ballisticity condition for random walk in random environment. Comm. Pure Appl. Math. To appear. Available at . arXiv:1206.6377 · Zbl 1364.60140 · doi:10.1002/cpa.21500 [5] Bogachev, L. V. (2006). Random walks in random environments. In Encyclopedia in Mathematical Physics 353-371. Elsevier, Oxford. [6] Bolthausen, E. and Sznitman, A.-S. (2002). On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. 9 345-375. · Zbl 1079.60079 · doi:10.4310/MAA.2002.v9.n3.a4 [7] Bolthausen, E., Sznitman, A.-S. and Zeitouni, O. (2003). Cut points and diffusive random walks in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 39 527-555. · Zbl 1016.60094 · doi:10.1016/S0246-0203(02)00019-5 [8] Bolthausen, E. and Zeitouni, O. (2007). Multiscale analysis of exit distributions for random walks in random environments. Probab. Theory Related Fields 138 581-645. · Zbl 1126.60088 · doi:10.1007/s00440-006-0032-3 [9] Bricmont, J. and Kupiainen, A. (1991). Random walks in asymmetric random environments. Comm. Math. Phys. 142 345-420. · Zbl 0734.60112 · doi:10.1007/BF02102067 [10] Evans, L. C. (2010). Partial Differential Equations , 2nd ed. Amer. Math. Soc., Providence, RI. · Zbl 1194.35001 [11] Guo, X. and Zeitouni, O. (2012). Quenched invariance principle for random walks in balanced random environment. Probab. Theory Related Fields 152 207-230. · Zbl 1239.60092 · doi:10.1007/s00440-010-0320-9 [12] Kalikow, S. A. (1981). Generalized random walk in a random environment. Ann. Probab. 9 753-768. · Zbl 0545.60065 · doi:10.1214/aop/1176994306 [13] Krantz, S. G. (2005). Calculation and estimation of the Poisson kernel. J. Math. Anal. Appl. 302 143-148. · Zbl 1060.31004 · doi:10.1016/j.jmaa.2004.08.010 [14] Krylov, N. V. (1996). Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics 12 . Amer. Math. Soc., Providence, RI. · Zbl 0865.35001 [15] Lawler, G. F. (1982). Weak convergence of a random walk in a random environment. Comm. Math. Phys. 87 81-87. · Zbl 0502.60056 · doi:10.1007/BF01211057 [16] Lawler, G. F. (1991). Intersections of Random Walks . Birkhäuser, Boston, MA. · Zbl 1228.60004 [17] Lawler, G. F. and Limic, V. (2010). Random Walk : A Modern Introduction . Cambridge Univ. Press, Cambridge. · Zbl 1210.60002 · doi:10.1017/CBO9780511750854 [18] Sznitman, A.-S. (2001). On a class of transient random walks in random environment. Ann. Probab. 29 724-765. · Zbl 1017.60106 · doi:10.1214/aop/1008956691 [19] Sznitman, A.-S. (2002). An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Related Fields 122 509-544. · Zbl 0995.60097 · doi:10.1007/s004400100177 [20] Sznitman, A.-S. (2002). Lectures on Random Motions in Random Media. DMV Seminar 32 . Birkhäuser, Basel. · Zbl 1075.60128 [21] Sznitman, A.-S. (2003). On new examples of ballistic random walks in random environment. Ann. Probab. 31 285-322. · Zbl 1017.60104 · doi:10.1214/aop/1046294312 [22] Sznitman, A.-S. (2004). Topics in random walks in random environment. In School and Conference on Probability Theory. ICTP Lect. Notes , XVII 203-266 (electronic). Abdus Salam Int. Cent. Theoret. Phys., Trieste. · Zbl 1060.60102 [23] Sznitman, A.-S. and Zeitouni, O. (2006). An invariance principle for isotropic diffusions in random environment. Invent. Math. 164 455-567. · Zbl 1105.60079 · doi:10.1007/s00222-005-0477-5 [24] Zaitsev, A. Yu. (2002). Estimates for the strong approximation in multidimensional central limit theorem. In Proceedings of the International Congress of Mathematicians , Vol. III ( Beijing , 2002) 107-116. Higher Ed. Press, Beijing. · Zbl 1014.60018 [25] Zeitouni, O. (2004). Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189-312. Springer, Berlin. · Zbl 1060.60103 · doi:10.1007/978-3-540-39874-5_2 [26] Zeitouni, O. (2006). Topical review: Random walks in random environments. J. Phys. A 39 R433-R464. · Zbl 1108.60085 · doi:10.1088/0305-4470/39/40/R01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.