×

Stability and sensitive analysis of a model with delay quorum sensing. (English) Zbl 1344.92106

Summary: This paper formulates a delay model characterizing the competition between bacteria and immune system. The center manifold reduction method and the normal form theory due to [T. Faria and L. T. Magalhães, J. Differ. Equations 122, No. 2, 181–200 (1995; Zbl 0836.34068)] are used to compute the normal form of the model, and the stability of two nonhyperbolic equilibria is discussed. Sensitivity analysis suggests that the growth rate of bacteria is the most sensitive parameter of the threshold parameter \(R_0\) and should be targeted in the controlling strategies.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology

Citations:

Zbl 0836.34068
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Henke, J. M.; Bassler, B. L., Bacterial social engagements, Trends in Cell Biology, 14, 11, 648-656 (2004) · doi:10.1016/j.tcb.2004.09.012
[2] Nealson, K. H.; Platt, T.; Hastings, J. W., Cellular control of the synthesis and activity of the bacterial luminescent system, Journal of Bacteriology, 104, 1, 313-322 (1970)
[3] Eberhard, A., Inhibition and activation of bacterial luciferase synthesis, Journal of Bacteriology, 109, 3, 1101-1105 (1972)
[4] Braselton, J. P.; Waltman, P., A competition model with dynamically allocated inhibitor production, Mathematical Biosciences, 173, 2, 55-84 (2001) · Zbl 0984.92033 · doi:10.1016/S0025-5564(01)00078-5
[5] Dockery, J. D.; Keener, J. P., A mathematical model for quorum sensing in Pseudomonas aeruginosa, Bulletin of Mathematical Biology, 63, 1, 95-116 (2001) · Zbl 1323.92123 · doi:10.1006/bulm.2000.0205
[6] Koerber, A. J.; King, J. R.; Ward, J. P.; Williams, P.; Croft, J. M.; Sockett, R. E., A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion, Bulletin of Mathematical Biology, 64, 2, 239-259 (2002) · Zbl 1334.92235 · doi:10.1006/bulm.2001.0272
[7] Fergola, P.; Beretta, E.; Cerasuolo, M., Some new results on an allelopathic competition model with quorum sensing and delayed toxicant production, Nonlinear Analysis: Real World Applications, 7, 5, 1081-1095 (2006) · Zbl 1104.92059 · doi:10.1016/j.nonrwa.2005.10.001
[8] Anguige, K.; King, J. R.; Ward, J. P., A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm, Mathematical Biosciences, 203, 2, 240-276 (2006) · Zbl 1101.92020 · doi:10.1016/j.mbs.2006.05.009
[9] Anguige, K.; King, J. R.; Ward, J. P.; Williams, P., Mathematical modelling of therapies targeted at bacterial quorum sensing, Mathematical Biosciences, 192, 1, 39-83 (2004) · Zbl 1057.92033 · doi:10.1016/j.mbs.2004.06.008
[10] Fergola, P.; Zhang, J.; Cerasuolo, M., On the influence of quorum sensing in the competition between bacteria and immune system of invertebrates, collective dynamic: topics on copetition and coopertion in the biosciences: a selection of papers, Proceedings of the BIOCOMP International Conference
[11] Zhang, Z. H.; Peng, J. G.; Zhang, J., Analysis of a bacteria-immunity model with delay quorum sensing, Journal of Mathematical Analysis and Applications, 340, 1, 102-115 (2008) · Zbl 1127.92029 · doi:10.1016/j.jmaa.2007.08.027
[12] Juan, Z.; Zhonghua, Z.; Yaohong, S., Hopf bifurcation of a bacteria-immunity system with delayed quorum sensing, Applied Mathematics and Computation, 215, 11, 3936-3949 (2010) · Zbl 1181.92051 · doi:10.1016/j.amc.2009.11.042
[13] Zhang, Z. H.; Wu, J. H.; Suo, Y. H.; Juan, Z., Hopf bifurcation direction of a delayed bacteria-immunity system with quorum sensing mechanism, Nonlinear Analysis: Real World Applications, 11, 4, 2422-2435 (2010) · Zbl 1206.34105 · doi:10.1016/j.nonrwa.2009.07.015
[14] Zhang, Z. H.; Peng, J. G.; Zhang, J., Melnikov method to a bacteria-immunity model with bacterial quorum sensing mechanism, Chaos, Solitons & Fractals, 40, 1, 414-420 (2009) · Zbl 1197.37130 · doi:10.1016/j.chaos.2007.07.079
[15] Zhang, Z. H.; Zhang, J.; Peng, J. G., A bacteria-immunity system with delayed quorum sensing, Journal of Applied Mathematics and Computing, 40, 414-420 (2009) · Zbl 1197.37130
[16] Faria, T.; Magalhaes, L. T., Normal forms for retarded differential equations and applications to Bogdanov-Takens singularity, Journal of Differential Equations, 122, 2, 201-224 (1995) · Zbl 0836.34069
[17] Faria, T.; Magalhaes, L. T., Normal forms for functional differential equations with parameters and applications to Hopf bifurcation, Journal of Differential Equations, 122, 180-200 (1995) · Zbl 0836.34068
[18] Hale, J. K.; Lunel, S. M. V., Introduction to Functional Differential Equations (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[19] Chitnis, N.; Hyman, J. M.; Cushing, J. M., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bulletin of Mathematical Biology, 70, 5, 1272-1296 (2008) · Zbl 1142.92025 · doi:10.1007/s11538-008-9299-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.