Mhlanga, A.; Bhunu, C. P.; Mushayabasa, S. A computational study of HSV-2 with poor treatment adherence. (English) Zbl 1344.92175 Abstr. Appl. Anal. 2015, Article ID 850670, 15 p. (2015). Summary: Herpes simplex virus type 2 (HSV-2) is the most prevalent sexually transmitted disease worldwide, despite the availability of highly effective antiviral treatments. In this paper, a basic mathematical model for the spread of HSV-2 incorporating all the relevant biological details and poor treatment adherence is proposed and analysed. Equilibrium states of the model are determined and their stability has been investigated. The basic model is then extended to incorporate a time dependent intervention strategy. The aim of the control is tied to reducing the rate at which HSV-2 patients in treatment quit therapy before completion. Practically, this control can be implemented through monitoring and counselling all HSV-2 patients in treatment. The Pontryagin’s maximum principle is used to characterize the optimal level of the control, and the resulting optimality system is solved numerically. Overall, the study demonstrates that though time dependent control will be effective on controlling new HSV-2 cases it may not be sustainable for certain time intervals. Cited in 3 Documents MSC: 92D30 Epidemiology 92C60 Medical epidemiology 49N90 Applications of optimal control and differential games Keywords:Herpes simplex virus type 2; equilibrium states; stability; Pontryagin’s maximum principle; optimality system × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Laga, M.; Diallo, M. O.; Buvé, A., Interrelationship of sexually transmitted diseases and HIV: where are we now?, AIDS, 8, 1, S119-S124 (1994) [2] Aral, S. O.; Wasserheit, J. N.; Holmes, K. K.; Sparling, P. F.; Mardh, P. A.; Lemon, S. M.; Stamm, W. E.; Piot, P.; Wasserheit, J. N., STD-related health care seeking and health service delivery, Sexually Transmitted Diseases, 1295-1306 (1999), New York, NY, USA: McGraw-Hill, New York, NY, USA [3] Kalichman, S.; Rompa, D., HIV treatment adherence and unprotected sex practices in people receiving antiretroviral therapy, Sexually Transmitted Infections, 79, 1, 59-61 (2003) · doi:10.1136/sti.79.1.59 [4] Mushayabasa, S.; Bhunu, C. P., Modeling the impact of early therapy for latent tuberculosis patients and its optimal control analysis, The Journal of Biological Physics, 39, 4, 723-747 (2013) · doi:10.1007/s10867-013-9328-6 [5] Christensen, A. J., Patience Adherence to Medical Treatment Regimens: Bridging the Gap between Behavioral Science and Biomedicine (2004), New Haven, Conn, USA: Yale University Press, New Haven, Conn, USA [6] McDonnell, P. J.; Jacobs, M. R., Hospital admissions resulting from preventable adverse drug reactions, Annals of Pharmacotherapy, 36, 9, 1331-1336 (2002) · doi:10.1345/aph.1a333 [7] Senst, B. L.; Achusim, L. E.; Genest, R. P.; Cosentino, L. A.; Ford, C. C.; Little, J. A.; Raybon, S. J.; Bates, D. W., Practical approach to determining costs and frequency of adverse drug events in a health care network, American Journal of Health-System Pharmacy, 58, 12, 1126-1132 (2001) [8] Watson-Jones, D.; Weiss, H. A.; Rusizoka, M.; Baisley, K.; Mugeye, K.; Changalucha, J.; Everett, D.; Balira, R.; Knight, L.; Ross, D.; Hayes, R. J., Risk factors for herpes simplex virus type 2 and HIV among women at high risk in northwestern Tanzania: peparing for an HSV-2 intervention trial, Journal of Acquired Immune Deficiency Syndromes, 46, 5, 631-642 (2007) · doi:10.1097/qai.0b013e31815b2d9c [9] Feng, Z.; Qiu, Z.; Sang, Z.; Lorenzo, C.; Glasser, J., Modeling the synergy between HSV-2 and HIV and potential impact of HSV-2 therapy, Mathematical Biosciences, 245, 2, 171-187 (2013) · Zbl 1308.92063 · doi:10.1016/j.mbs.2013.07.003 [10] Fiddian, A. P.; Halsos, A. M.; Kinge, B. R.; Nilsen, A. E.; Wikstrom, K., Oral acyclovir in the treatment of genital herpes. Preliminary report of a multicenter trial, The American Journal of Medicine, 73, 1, 335-337 (1982) · doi:10.1016/0002-9343(82)90118-8 [11] Celum, C.; Levine, R.; Weaver, M.; Wald, A., Genital herpes and human immunodeficiency virus: double trouble, Bulletin of the World Health Organization, 82, 6, 447-453 (2004) [12] Bosworth, H. B., Improving Patient Treatment Adherence. A Clinician’s Guide (2010), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-1-4419-5866-2 [13] Plummer, M. L.; Watson-Jones, D.; Lees, S.; Baisley, K.; Matari, S.; Changalucha, J.; Clayton, T.; Mugeye, K.; Tanton, C.; Weiss, H. A.; Ross, D. A.; Hayes, R. J., A qualitative study of participant adherence in a randomized controlled trial of herpes suppressive therapy for HIV prevention in Tanzania, AIDS Care: Psychological and Socio-Medical Aspects of AIDS/HIV, 22, 4, 499-508 (2010) · doi:10.1080/09540120903202889 [14] Blower, S. M.; Porco, T. C.; Darby, G., Predicting and preventing the emergence of antiviral drug resistance in HSV-2, Nature Medicine, 4, 6, 673-678 (1998) · doi:10.1038/nm0698-673 [15] Mhlanga, A.; Bhunu, C. P.; Mushayabasa, S., HSV-2 and substance abuse amongst adolescents: insights through mathematical modelling, Journal of Applied Mathematics, 2014 (2014) · Zbl 1437.92131 · doi:10.1155/2014/104819 [16] Podder, C. N.; Gumel, A. B., Transmission dynamics of a two-sex model for herpes simplex virus type-2, Canadian Applied Mathematics Quarterly, 7, 2, 339-386 (2009) · Zbl 1209.92040 [17] Blower, S.; Volberding, P., What can modeling tell us about the threat of antiviral drug resistance?, Current Opinion in Infectious Diseases, 15, 6, 609-614 (2002) · doi:10.1097/00001432-200212000-00009 [18] Foss, A. M.; Vickerman, P. T.; Chalabi, Z.; Mayaud, P.; Alary, M.; Watts, C. H., Dynamic modeling of herpes simplex virus type-2 (HSV-2) transmission: issues in structural uncertainty, Bulletin of Mathematical Biology, 71, 3, 720-749 (2009) · Zbl 1163.92025 · doi:10.1007/s11538-008-9379-1 [19] Abu-Raddad, L. J.; Magaret, A. S.; Celum, C.; Wald, A.; Longini, I. M.; Self, S. G.; Corey, L., Genital herpes has played a more important role than any other sexually transmitted infection in driving HIV prevalence in Africa, PLoS ONE, 3, 5 (2008) · doi:10.1371/journal.pone.0002230 [20] Bangsberg, D. R.; Perry, S.; Charlebois, E. D.; Clark, R. A.; Roberston, M.; Zolopa, A. R.; Moss, A., Non-adherence to highly active antiretroviral therapy predicts progression to AIDS, AIDS, 15, 9, 1181-1183 (2001) · doi:10.1097/00002030-200106150-00015 [21] Golin, C. E.; Liu, H.; Hays, R. D.; Miller, L. G.; Beck, C. K.; Ickovics, J.; Kaplan, A. H.; Wenger, N. S., A prospective study of predictors of adherence to combination antiretroviral medication, Journal of General Internal Medicine, 17, 10, 756-765 (2002) · doi:10.1046/j.1525-1497.2002.11214.x [22] Van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 1-2, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/s0025-5564(02)00108-6 [23] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0576.15001 · doi:10.1017/cbo9780511810817 [24] Smith, H. L.; Waltman, P., The Theory of the Chemostat (1995), Cambridge University Press · Zbl 0860.92031 · doi:10.1017/cbo9780511530043 [25] Thieme, H. R., Persistence under relaxed point-dissipativity (with application to an endemic model), SIAM Journal on Mathematical Analysis, 24, 2, 407-435 (1993) · Zbl 0774.34030 · doi:10.1137/0524026 [26] Li, J.; Yang, Y.; Zhou, Y., Global stability of an epidemic model with latent stage and vaccination, Nonlinear Analysis: Real World Applications, 12, 4, 2163-2173 (2011) · Zbl 1220.34069 · doi:10.1016/j.nonrwa.2010.12.030 [27] Huo, H.-F.; Chen, R., Stability of an HIV/AIDS treatment model with different stages, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1418.92077 · doi:10.1155/2015/630503 [28] Powell, D. R.; Fair, J.; Le Claire, R. J.; Moore, L. M.; Thompson, D., Sensitivity analysis of an infectious disease model, Proceedings of the International System Dynamics Conference [29] Arriola, L. M.; Hyman, J. M., Being sensitive to uncertainty, Computing in Science and Engineering, 9, 2, 10-20 (2007) · doi:10.1109/mcse.2007.27 [30] Wright, J. M.; Htun, Y.; Leong, M. G.; Forman, P.; Ballard, R. C., Evaluation of the use of calendar blister packaging on patient compliance with STD syndromic treatment regimens, Sexually Transmitted Diseases, 26, 10, 556-563 (1999) · doi:10.1097/00007435-199911000-00004 [31] Beaucage, K.; Lachance-Demers, H.; Ngo, T. T.-T.; Vachon, C.; Lamarre, D.; Guévin, J.-F.; Martineau, A.; Desroches, D.; Brassard, J.; Lalonde, L., Telephone follow-up of patients receiving antibiotic prescriptions from community pharmacies, American Journal of Health-System Pharmacy, 63, 6, 557-563 (2006) · doi:10.2146/ajhp050177 [32] Reyes, H.; Guiscafre, H.; Muñoz, O.; Perez-Cuevas, R.; Martinez, H.; Gutierrez, G., Antibiotic noncompliance and waste in upper respiratory infections and acute diarrhea, Journal of Clinical Epidemiology, 50, 11, 1297-1304 (1997) · doi:10.1016/S0895-4356(97)00197-2 [33] Kardas, P., Patient compliance with antibiotic treatment for respiratory tract infections, Journal of Antimicrobial Chemotherapy, 49, 6, 897-903 (2002) · doi:10.1093/jac/dkf046 [34] Joshi, H. R., Optimal control of an HIV immunology model, Optimal control applications and methods, 23, 4, 199-213 (2002) · Zbl 1072.92509 · doi:10.1002/oca.710 [35] Kirschner, D.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, Journal of Mathematical Biology, 35, 7, 775-792 (1997) · Zbl 0876.92016 · doi:10.1007/s002850050076 [36] Pontryagin, L. S.; Boltyanskii, V. T.; Gamkrelidze, R. V.; Mishchevko, E. F., The Mathematical Theory of Optimal Processes, 4 (1985), Gordon and Breach Science Publishers [37] Fleming, W. H.; Rishel, R. W., Deterministic and Stochastic Optimal Control (1975), New York, NY, USA: Springer, New York, NY, USA · Zbl 0323.49001 [38] Reitano, M.; Tyring, S.; Lang, W.; Thoming, C.; Worm, A.-M.; Borelli, S.; Chambers, L. O.; Robinson, J. M.; Corey, L., Valaciclovir for the suppression of recurrent genital herpes simplex virus infection: a large-scale dose range-finding study, Journal of Infectious Diseases, 178, 3, 603-610 (1998) · doi:10.1086/515385 [39] Watson-Jones, D.; Baisley, K.; Rusizoka, M.; Tanton, C.; Mugeye, K.; Weiss, H. A.; Changalucha, J.; Clayton, T.; Hambleton, I.; Ross, D. A.; Hayes, R. J., Measurement and predictors of adherence in a trial of HSV suppressive therapy in Tanzania, Contemporary Clinical Trials, 30, 6, 504-512 (2009) · doi:10.1016/j.cct.2009.07.002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.