×

zbMATH — the first resource for mathematics

On rate of convergence of Jungck-type iterative schemes. (English) Zbl 1345.65041
Summary: We introduce a new iterative scheme called Jungck-CR iterative scheme and study the stability and strong convergence of this iterative scheme for a pair of nonself-mappings using a certain contractive condition. Also, convergence speed comparison and applications of Jungck-type iterative schemes will be shown through examples.

MSC:
65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jungck, G., Commuting mappings and fixed points, The American Mathematical Monthly, 83, 4, 261-263, (1976) · Zbl 0321.54025
[2] Singh, S. L.; Bhatnagar, C.; Mishra, S. N., Stability of Jungck-type iterative procedures, International Journal of Mathematics and Mathematical Sciences, 19, 3035-3043, (2005) · Zbl 1117.26005
[3] Olatinwo, M. O., Some stability and strong convergence results for the Jungck-Ishikawa iteration process, Creative Mathematics and Informatics, 17, 33-42, (2008) · Zbl 1199.47282
[4] Bosede, A. O., Strong convergence results for the Jungck-Ishikawa and Jungck-Mann iteration processes, Bulletin of Mathematical Analysis and Applications, 2, 3, 65-73, (2010) · Zbl 1312.47080
[5] Olaleru, J. O.; Akewe, H., On multistep iterative scheme for approximating the common fixed points of contractive-like operators, International Journal of Mathematics and Mathematical Sciences, 2010, (2010) · Zbl 05695253
[6] Olatinwo, M. O., A generalization of some convergence results using a Jungck-Noor three-step iteration process in arbitrary Banach space, Polytechnica Posnaniensis, 40, 37-43, (2008) · Zbl 1177.47078
[7] Chugh, R.; Kumar, V., Strong Convergence and Stability results for Jungck-SP iterative scheme, International Journal of Computer Applications, 36, 12, (2011)
[8] Phuengrattana, W.; Suantai, S., On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, Journal of Computational and Applied Mathematics, 235, 9, 3006-3014, (2011) · Zbl 1215.65095
[9] Noor, M. A., New approximation schemes for general variational inequalities, Journal of Mathematical Analysis and Applications, 251, 1, 217-229, (2000) · Zbl 0964.49007
[10] Ishikawa, S., Fixed points by a new iteration method, Proceedings of the American Mathematical Society, 44, 1, 147-150, (1974) · Zbl 0286.47036
[11] Mann, W. R., Mean value methods in iteration, Proceedings of the American Mathematical Society, 4, 506-510, (1953) · Zbl 0050.11603
[12] Agarwal, R. P.; O’Regan, D.; Sahu, D. R., Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, Journal of Nonlinear and Convex Analysis, 8, 1, 61-79, (2007) · Zbl 1134.47047
[13] Sahu, D. R.; Petruşel, A., Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 74, 17, 6012-6023, (2011) · Zbl 1281.47054
[14] Berinde, V., Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory and Applications, 2, 97-105, (2004) · Zbl 1090.47053
[15] Qing, Y.; Rhoades, B. E., Comments on the rate of convergence between Mann and Ishikawa iterations applied to Zamfirescu operators, Fixed Point Theory and Applications, 2008, (2008) · Zbl 1203.47076
[16] Hussain, N.; Jungck, G.; Khamsi, M. A., Nonexpansive retracts and weak compatible pairs in metric spaces, Fixed Point Theory and Applications, 2012, article 100, (2012) · Zbl 1273.54058
[17] Jungck, G.; Hussain, N., Compatible maps and invariant approximations, Journal of Mathematical Analysis and Applications, 325, 2, 1003-1012, (2007) · Zbl 1110.54024
[18] Berinde, V., On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Mathematica Universitatis Comenianae, 73, 1, 119-126, (2004) · Zbl 1100.47054
[19] Chugh, R.; Kumar, V., Convergence of SP iterative scheme with mixed errors for accretive Lipschitzian and strongly accretive Lipschitzian operators in Banach space, International Journal of Computer Mathematics, 2013, (2013) · Zbl 1414.47003
[20] Hussain, N.; Rafiq, A.; Damjanović, B.; Lazović, R., On rate of convergence of various iterative schemes, Fixed Point Theory and Applications, 45, (2011) · Zbl 1315.47065
[21] Rhoades, B. E., Comments on two fixed point iteration methods, Journal of Mathematical Analysis and Applications, 56, 3, 741-750, (1976) · Zbl 0353.47029
[22] Singh, S. L., A new approach in numerical praxis, Progress of Mathematics, 32, 2, 75-89, (1998) · Zbl 1188.65077
[23] Hussain, N.; Chugh, R.; Kumar, V.; Rafiq, A., On the rate of convergence of Kirk-type iterative schemes, Journal of Applied Mathematics, (2012) · Zbl 1325.47120
[24] Hussain, N.; Rafiq, A.; Ciric, L. B.; Al-Mezel, S., Almost stability of the Mann type iteration method with error term involving strictly hemicontractive mappings in smooth Banach spaces, Journal of Inequalities and Applications, 2012, article 207, (2012) · Zbl 1446.47065
[25] Hussain, N.; Rafiq, A.; Ciric, L. B., Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces, Fixed Point Theory and Applications, 2012, article 160, (2012) · Zbl 06234982
[26] Khan, S. H.; Rafiq, A.; Hussain, N., A three-step iterative scheme for solving nonlinear \(\phi\)-strongly accretive operator equations in Banach spaces, Fixed Point Theory and Applications, 2012, article 149, (2012) · Zbl 06234993
[27] Song, Y.; Liu, X., Convergence comparison of several iteration algorithms for the common fixed point problems, Fixed Point Theory and Applications, 2009, (2009)
[28] Barnsley, M. F., Fractals Everywhere, xiv+534, (1993), Boston, Mass, USA: Academic Press Professional, Boston, Mass, USA · Zbl 0784.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.