zbMATH — the first resource for mathematics

Extracting low-velocity concentric and eccentric dynamic muscle properties from isometric contraction experiments. (English) Zbl 1346.92016
Math. Biosci. 278, 77-93 (2016); corrigendum ibid. 291, 56-58 (2017).
Summary: Determining dynamic properties of mammalian muscles, such as activation characteristics or the force-velocity relation, challenges the experimentalist. Tracking system, apparatus stiffness, load oscillation, force transducer, other sensors, and additional measuring devices may be incorporated, integrated and evaluated in an experimental set-up. In contrast, isometric contraction experiments (ICEs) are less challenging, but are generally not considered to reveal dynamic muscle properties. Yet, a sensitivity analysis of our muscle model discloses the influence of concentric, eccentric and activation parameters on isometric force development. Accordingly, we used solely experimental ICE data to identify muscle model parameters that generally describe concentric as well as eccentric muscle performance. In addition, we compared two different activation dynamics in regards to their physiological relevance to improve model-fits to ICE data. To this end, we optimized different combinations of such dynamic parameter subsets with respect to their influence on contraction solutions. Depending on muscle length in our optimized model, the contractile element reached shortening peaks during activation in the range 9–39% of its maximum contraction velocity, and about 8–25% during lengthening when deactivated. As a first result, we suggest one formulation of activation dynamics to be superior. Second, the step in slope of the force-velocity relation at isometric force was found to be the least influential among all dynamic parameters. Third, we suggest a specially designed isometric experimental set-up to estimate this transition parameter. Fourth, because of an inconsistency in literature, we developed a simple method to determine switching times of the neural stimulation and thus electro-mechanical delay (EMD) values from measuring muscle force in ICEs only.

92C10 Biomechanics
Full Text: DOI
[1] Abbott, B.; Aubert, X., The force exerted by active striated muscle during and after change of length, J. Physiol., 117, 1, 77-86, (1952)
[2] Altman, D.; Minozzo, F. C.; Rassier, D. E., Thixotropy and rheopexy of muscle fibers probed using sinusoidal oscillations, Public Libr. Sci. One, 10, 4, e0121726, (2015)
[3] Axelson, H., Muscle Thixotropy - Implications for Human Motor Control, (2005), Uppsala Universitet, Ph.D. thesis.
[4] Banus, M. G.; Zetlin, A. M., The relation of isometric tension to length in skeletal muscle, J. Cell. Comp. Physiol., 12, 403-420, (1938)
[5] Blix, M., Die länge und die spannung des muskels iv (German text), Skand. Arch. Physiol., 5, 1, 173-206, (1894)
[6] Brown, I. E.; Cheng, E. J.; Loeb, G. E., Measured and modeled properties of Mammalian skeletal muscle. II. the effects of stimulus frequency on force-length and force-velocity relationships, J. Muscle Res. Cell Motil., 20, 7, 627-643, (1999)
[7] Brown, I. E.; Loeb, G. E., Measured and modeled properties of Mammalian skeletal muscle. I. the effects of post-activation potentiation on the time course and velocity dependencies of force production, J. Muscle Res. Cell Motil., 20, 5-6, 443-456, (1999)
[8] Brown, I. E.; Loeb, G. E., Measured and modeled properties of Mammalian skeletal muscle: III. the effects of stimulus frequency on stretch-induced force enhancement and shortening-induced force depression, J. Muscle Res. Cell Motil., 21, 1, 21-31, (2000)
[9] Brown, I. E.; Loeb, G. E., Measured and modeled properties of Mammalian skeletal muscle: IV. dynamics of activation and deactivation, J. Muscle Res. Cell Motil., 21, 1, 33-47, (2000)
[10] Chernoff, H., Sequential analysis and optimal design, (1972), Society for Industrial and Applied Mathematics · Zbl 0265.62024
[11] Colle, J., Influences de l’excitant et du milieu extérieur sur LES propiétés élastiques du muscle de grenouille (French text), Arch. Int. Physiol. Biochim. Biophys., 31, 194-213, (1929)
[12] Dowling, N. E., Mechanical Behaviour of Materials, 4, (2012), Prentice Hall
[13] Edman, K., The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres, J. Physiol., 291, 143-159, (1979)
[14] Edman, K., Double-hyperbolic force-velocity relation in frog muscle fibres, J. Physiol., 404, 301-321, (1988)
[15] Edman, K., Residual force enhancement after stretch in striated muscle. A consequence of increased myofilament overlap?, J. Physiol., 590, Pt 6, 1339-1345, (2012)
[16] Edman, K.; Månsson, A.; Caputo, C., The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function, J. Physiol., 503, Pt 1, 141-156, (1997)
[17] Edman, K. A.P.; Mulieri, L. A.; Scubon-Mulieri, B., Non-hyperbolic force-velocity relationship in single muscle fibre, Acta Physiol. Scand., 98, 2, 143-156, (1976)
[18] Fedorov, V. V.; Hackl, P., Theory of Optimal Experiments, (1972), Academic Press
[19] Fenn, W. O.; Marsh, B. S., Muscular force at different speeds of shortening, J. Physiol., 85, 3, 277-297, (1935)
[20] Gasser, H. S.; Hill, A. V., The dynamics of muscular contraction, Proc. R. Soc. B, 96, 678, 398-437, (1924)
[21] Gordon, A. M.; Huxley, A. F.; Julian, F. J., The variation in isometric tension with sarcomere length in vertebrate muscle fibers, J. Physiol., 184, 1, 170-192, (1966)
[22] Götz, T.; Rockenfeller, R.; Wijaya, K. P., Optimization problems in epidemiology, biomechanics & medicine, Int. J. Adv. Eng. Sci. Appl. Math., 7, 2, 25-32, (2015) · Zbl 1342.49062
[23] Günther, M., Computersimulation zur Synthetisierung des muskulär erzeugten menschlichen Gehens unter Verwendung eines biomechanischen Mehrkörpermodells, (1997), Universität Tübingen, Ph.D. thesis
[24] Günther, M.; Ruder, H., Synthesis of two-dimensional human walking: a test of the λ-model, Biol. Cybern., 89, 2, 89-106, (2003) · Zbl 1084.92004
[25] Günther, M.; Schmitt, S., A macroscopic ansatz to deduce the Hill relation, J. Theor. Biol., 263, 4, 407-418, (2010)
[26] Günther, M.; Schmitt, S.; Wank, V., High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models, Biol. Cybern., 97, 1, 63-79, (2007) · Zbl 1125.92007
[27] Haeufle, D. F.B.; Günther, M.; Bayer, A.; Schmitt, S., Hill-type muscle model with serial damping and eccentric force-velocity relation, J. Biomech., 47, 6, 1531-1536, (2014)
[28] Haeufle, D. F.B.; Günther, M.; Blickhan, R.; Schmitt, S., Can quick release experiments reveal the muscle structure? a bionic approach, J. Bionic Eng., 9, 2, 211-223, (2012)
[29] Harry, J. D.; Ward, A. W.; Heglund, N. C.; Morgan, D. L.; McMahon, T. A., Cross-bridge cycling theories cannot explain high-speed lengthening behavior in frog muscle, Biophys. J., 57, 2, 201-208, (1990)
[30] Hatze, H., The complete optimization of a human motion, Math. Biosci., 28, 1-2, 99-135, (1976) · Zbl 0331.92003
[31] Hatze, H., A myocybernetic control model of skeletal muscle, Biol. Cybern., 25, 2, 103-119, (1977) · Zbl 0346.92011
[32] Hatze, H., A general myocybernetic control model of skeletal muscle, Biol. Cybern., 28, 3, 143-157, (1978) · Zbl 0367.92002
[33] Hatze, H., Neuromusculoskeletal control systems modeling-a critical survey of recent developments, IEEE Trans. Autom. Control, 25, 3, 375-385, (1980) · Zbl 0432.92005
[34] Hawkins, D.; Bey, M., Muscle and tendon force-length properties and their interactions in vivo, J. Biomech., 30, 1, 63-70, (1997)
[35] Herzog, W.; Abrahamse, S. K.; ter Keurs, H. E.D. J., Theoretical determination of force-length relations of human skeletal muscles using the cross-bridge model, Eur. J. Physiol., 416, 1, 113-119, (1990)
[36] Herzog, W.; Kamal, S.; Clarke, D., Myofilament lengths of cat skeletal muscle: theoretical considerations and functional implications, J. Biomech., 25, 8, 945-948, (1992)
[37] Herzog, W.; Lee, E. J.; Rassier, D. E., Residual force enhancement in skeletal muscle, J. Physiol., 574, 3, 635-642, (2006)
[38] Hill, A., The abrupt transition from rest to activity in muscle, Proc. R. Soc. B, 136, 884, 399-420, (1949)
[39] Hill, A., The development of the active state of muscle during the latent period, Proc. R. Soc. B, 137, 320-329, (1950)
[40] Hill, A., The series elastic component of muscle, Proc. R. Soc. B, 137, 273-280, (1950)
[41] Hill, A. V., The maximum work and mechanical efficiency of human muscles, and their most economical speed, J. Physiol., 56, 1, 19-41, (1922)
[42] Hill, A. V., The heat of shortening and the dynamic constants of muscle, Proc. R. Soc. London B, 126, 843, 136-195, (1938)
[43] Hille, B., Ion Channels of Excitable Membranes, 3, (2001), Sinauer Associates, Inc., Sunderland
[44] Huijing, P. A., Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity, Eur. J. Morphol., 34, 1, 47-54, (1996)
[45] Huijing, P. A.; Ettema, G. J., Length-force characteristics of aponeurosis in passive muscle and during isometric and slow dynamic contractions of rat gastrocnemius muscle, Acta Morphol. Neerlando Scand., 26, 1, 51-62, (1988)
[46] Joyce, G. C.; Rack, P. M.H., Isotonic lengthening and shortening movements of cat soleus muscle, J. Physiol., 204, 2, 475-491, (1969)
[47] Joyce, G. C.; Rack, P. M.H.; Westbury, D. R., The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements, J. Physiol., 204, 2, 461-474, (1969)
[48] Katz, B., The relation between force and speed in muscular contraction, J. Physiol., 96, 1, 45-64, (1939)
[49] Ker, R. F., Dynamic tensile properties of the plantaris tendon of sheep (ovis aries), J. Exp. Biol., 93, 283-302, (1981)
[50] Ker, R. F.; Wang, X. T.; Pike, A. V., Fatigue quality of Mammalian tendons, J. Exp. Biol., 203, Pt 8, 1317-1327, (2000)
[51] Kistemaker, D. A.; van Soest, A. J.; Bobbert, M. F., Length-dependent [ca2+] sensitivity adds stiffness to muscle, J. Biomech., 38, 9, 1816-1821, (2005)
[52] Kosterina, N.; Eriksson, A., History effect and timing of force production introduced in a skeletal muscle, Biomech. Model. Mechanobiol., 11, 7, 947-957, (2012)
[53] Kosterina, N.; Westerblad, H.; Eriksson, A., Mechanical work as predictor of force enhancement and force depression, J. Biomech., 42, 11, 1628-1634, (2009)
[54] Kosterina, N.; Westerblad, H.; J., L.; Eriksson, A., Muscular force production after concentric contraction, J. Biomech., 41, 11, 2422-2429, (2008)
[55] Krylow, A. M.; Sandercock, T. G., Dynamic force responses of muscle involving eccentric contraction, J. Biomech., 30, 1, 27-33, (1997)
[56] Lakie, M.; Robson, L. G., Thixotropic changes in human muscle stiffness and the effects of fatigue, Q. J. Exp. Physiol., 73, 4, 487-500, (1988)
[57] Lehman, S. L.; Stark, L. W., Three algorithms for interpreting models consisting of ordinary differential equations: sensitivity coefficients, sensitivity functions, global optimization, Math. Biosci., 62, 1, 107-122, (1982) · Zbl 0504.93022
[58] Levin, A.; Wyman, J., The viscous elastic properties of muscle, Proc. R. Soc. B, 101, 709, 218-243, (1927)
[59] Linari, M.; Lucil, L.; Reconditi, M.; Casoni, M. E.; Amenitsch, H.; Bernstorff, S.; Piazzesi, G.; Lombardi, V., A combined mechanical and x-ray diffraction study of stretch potentiation in single frog muscle fibres., J. Physiol., 526, 3, 589-596, (2000)
[60] Lupton, H., The relation between the external work produced and the time occupied in a single muscular contraction in man, J. Physiol., 57, 1, 68-75, (1922)
[61] Ma, S.; Zahalak, G. I., Activation dynamics for a distribution-moment hodel of skeletal muscle, Math. Comput. Model., 11, 1, 778-782, (1988)
[62] Macintosh, B. R.; Rassier, D. E., What is fatigue?, Can. J. Appl. Physiol., 27, 1, 42-55, (2002)
[63] Mashima, H.; Akazawa, K.; Kushima, H.; Fujii, K., The force-load-velocity relation and the viscous-like force in the frog skeletal muscle, Jpn. J. Physiol., 22, 1, 103-120, (1972)
[64] McGowan, C. P.; Neptune, R. R.; Herzog, W., A phenomenological model and validation of shortening-induced force depression during muscle contractions, J. Biomech., 43, 3, 449-454, (2010)
[65] More, H. L.; Hutchinson, J. R.; Collins, D. F.; Weber, D. J.; Aung, S. K.; Donelan, J. M., Scaling of sensorimotor control in terrestrial mammals, Proc. R. Soc. B: Biol. Sci., 277, 1700, 3563-3568, (2010)
[66] Morgan, D. L., New insights into the behavior of muscle during active lengthening, Biophys. J., 57, 2, 209-221, (1990)
[67] Morgan, D. L., An explanation for residual increased tension in striated muscle after stretch during contraction, Exp. Physiol., 79, 5, 813-818, (1994)
[68] Morgan, D. L.; Proske, U., Can all residual force enhancement be explained by sarcomere non-uniformities?, J. Physiol., 578, 2, 613-615, (2007)
[69] Mörl, F.; Siebert, T.; Haeufle, D. F.B., Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study, Biomech. Model. Mechanobiol., 15, 1, 245-258, (2016)
[70] Mörl, F.; Siebert, T.; Schmitt, S.; Blickhan, R.; Günther, M., Electro-mechanical delay in Hill-type muscle models, J. Mech. Med. Biol., 12, 5, 85-102, (2012)
[71] Pandy, M.; Zajac, F., Optimal muscular coordination strategies for jumping, J. Biomech., 24, 1, 1-10, (1991)
[72] Pandy, M.; Zajac, F.; Sim, E.; Levine, W., An optimal control model for maximum height human jumping, J. Biomech., 23, 12, 1185-1198, (1990)
[73] Patel, T. J.; Lieber, R. L., Force transmission in skeletal muscle: from actomyosin to external tendons, Exerc. Sport Sci. Rev., 25, 1, 321-364, (1997)
[74] Piazzesi, G.; Lucii, L.; Lombardi, V., The size and the speed of the working stroke of muscle myosin and its dependence on the force, J. Physiol., 545, Pt 1, 145-151, (2002)
[75] Pollock, C. M.; Shadwick, R. E., Allometry of muscle, tendon, and elastic energy storage capacity in mammals, Am. J. Physiol., 266, 3 Pt 2, R1022-1031, (1994)
[76] Pollock, C. M.; Shadwick, R. E., Relationship between body mass and biomechanical properties of limb tendons in adult mammals, Am. J. Physiol., 266, 3 Pt 2, R1016-1021, (1994)
[77] Prochel, A., Erstellung eines komplexen Muskel-Skelett-Modells zur Berechnung der Druckbelsastung in Gelenken bei vorwärtsdynamisch simulierten Bewegungsformen, (2009), Universität Tübingen, Ph.D. thesis
[78] Proske, U.; Morgan, D. L.; Gregory, J. E., Thixotropy in skeletal muscle and in muscle spindles: a review, Prog. Neurobiol., 41, 6, 705-721, (1993)
[79] Rassier, D. E.; Macintosh, B. R.; Herzog, W., Length dependence of active force production in skeletal muscle, J. Appl. Physiol., 86, 5, 1445-1457, (1999)
[80] Rijkelijkhuizen, J. M.; Baan, G. C.; de Haan, A.; de Ruiter, C. J.; Huijing, P. A., Extramuscular myofascial force transmission for in situ rat medial gastrocnemius and plantaris muscles in progressive stages of dissection, J. Exp. Biol., 208, 1, 129-140, (2005)
[81] Rockenfeller, R.; Götz, T., Optimal control of isometric muscle dynamics, J. Math. Fundam. Sci., 47, 1, 12-30, (2015)
[82] Rockenfeller, R.; Günther, M.; Schmitt, S.; Götz, T., Comparative sensitivity analysis of muscle activation dynamics, Comput. Math. Methods Med., 2015, 16pages, (2015), Article ID 585409, doi:10.1155/2015/585409
[83] Rode, C.; Siebert, T.; Blickhan, R., Titin-induced force enhancement and force depression: a ‘sticky-spring’ mechanism in muscle contractions?, J. Theor. Biol., 259, 2, 350-360, (2009)
[84] Rode, C.; Siebert, T.; Tomalka, A.; Blickhan, R., Myosin filament sliding through the z-disc relates striated muscle fibre structure to function, Proc. R. Soc. B, 283, 1826, 9Pages, (2016)
[85] Saltelli, A.; Chan, K.; Scott, E. M., Sensitivity Analysis, (2000), John Wiley · Zbl 0961.62091
[86] Schappacher-Tilp, G.; Leonard, T.; Desch, G.; Herzog, W., A novel three-filament model of force generation in eccentric contraction of skeletal muscles, Public Libr. Sci. One, 10, 3, e0117634, (2015)
[87] Schmitt, S.; Haeufle, D. F.B.; Blickhan, R.; Günther, M., Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle, Bioinspiration Biomim., 7, (2012)
[88] Siebert, T.; Rode, C.; Herzog, W.; Till, O.; Blickhan, R., Nonlinearities make a difference: comparison of two common Hill-type models with real muscle, Biol. Cybern., 98, 2, 133-143, (2008) · Zbl 1149.92302
[89] Siebert, T.; Till, O.; Blickhan, R., Work partitioning of transversally loaded muscle: experimentation and simulation, Comput. Methods Biomech. Biomed. Eng., 17, 3, 217-229, (2014)
[90] (Sperelakis, N., Cell Physiology Sourcebook: A Molecular Approach, 3, (2001), Academic Press, San Diago)
[91] Sugi, H.; Tsuchiya, T., Enhancement of mechanical performance in frog muscle fibres after quick increases in load, J. Physiol., 319, 1, 239-252, (1981)
[92] Sugi, H.; Tsuchiya, T., Isotonic velocity transients in frog muscle fibres following quick changes in load, J. Physiol., 319, 1, 219-238, (1981)
[93] Thelen, D. G., Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults, ASME J. Biomech. Eng., 125, 1, 70-77, (2003)
[94] Till, O.; Siebert, T.; Blickhan, R., A mechanism accounting for independence on starting length of tension increase in ramp stretches of active skeletal muscle at short half-sarcomere lengths, J. Theor. Biol., 266, 1, 117-123, (2010)
[95] Till, O.; Siebert, T.; Blickhan, R., Force depression decays during shortening in the medial gastrocnemius of the rat, J. Biomech., 47, 5, 1099-1103, (2014)
[96] Till, O.; Siebert, T.; Rode, C.; Blickhan, R., Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination, J. Theor. Biol., 225, 2, 176-187, (2008)
[97] Tomovic, R.; Vukobratovic, M., General Sensitivity Theory, (1972), American Elsevier, New York · Zbl 0302.93014
[98] van Soest, A. J., Jumping from Structure to Control: A Simulation Study of Explosive Movements, (1992), Vrije Universiteit Amsterdam, Ph.D. thesis
[99] van Soest, A. J.; Bobbert, M. F., The contribution of muscle properties in the control of explosive movements, Biol. Cybern., 69, 3, 195-204, (1993)
[100] van Soest, A. J.; Schwab, A. L.; Bobbert, M. F.; van Ingen Schenau, G. J., Spacar: a software subroutine package for simulation of the behavior of biomechanical systems, J. Biomech., 25, 10, 1219-1226, (1992)
[101] Wilkie, D., The relation between force and velocity in human muscle, J. Physiol., 110, 3-4, 249-280, (1949)
[102] Winters, J. M.; Stark, L., Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models, IEEE Trans. Biomed. Eng., BME-32, 10, 826-839, (1985)
[103] Winters, J. M.; Woo, S. L.Y., Multiple Muscle Systems - Biomechanics and Movement Organization, (1990), Springer
[104] Wood, S. A.; Morgan, D. L.; Proske, U., Effects of repeated eccentric contractions on structure and mechanical properties of toad sartorius muscle, Am. J. Physiol., 265, 3 Pt1, C792-800, (1993)
[105] Zahalak, G. I., Chapter 1: modeling muscle mechanics (and energetics), (Winters, J. M.; Woo, S. L.Y., Multiple muscle systems - biomechanics and movement organization, (1990), Springer)
[106] Zahalak, G. I.; Ma, S., Muscle activation and contraction: constitutive relations based directly on cross-bridge kinetics, J. Biomech. Eng., 112, 1, 52-62, (1990)
[107] Zajac, F. E., Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Crit. Rev. Biomed. Eng., 17, 4, 359-411, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.