×

zbMATH — the first resource for mathematics

Connecting interpolation and multiplicity estimates in commutative algebraic groups. (English) Zbl 1347.11054
Let \(G\) be a commutative algebraic group and \(\Gamma\) a finitely generated subgroup of \(G\). In transcendental number theory, an important tool is a zero estimate (or multiplicity estimate), which produces a lower bound for the degree of a nonzero polynomial vanishing (with multiplicity) on some finite subset of \(\Gamma\) [D. W. Masser and G. Wüstholz, Invent. Math. 64, 489–516 (1981; Zbl 0467.10025); P. Philippon, Bull. Soc. Math. Fr. 114, 355–383 (1986; Zbl 0617.14001); ibid. 115, 397–398 (1987; Zbl 0634.14001); Rocky Mt. J. Math. 26, No. 3, 1069–1088 (1996; Zbl 0893.11027)].
Another useful tool is an interpolation estimate which produces an upper bound for a polynomial taking given values at the points of such a finite subset. [D. Roy, J. Number Theory 94, No. 2, 248–285 (2002; Zbl 1010.11039); S. Fischler, Compos. Math. 141, No. 4, 907–925 (2005; Zbl 1080.14054); M. Nakamaye, in: Number theory, analysis and geometry. In memory of Serge Lang. Berlin: Springer. 475–498 (2012; Zbl 1268.11097); S. Fischler and M. Nakamaye, Ann. Inst. Fourier 64, No. 3, 1269–1289 (2014; Zbl 1330.14076)].
Multiplicity estimates are used together with auxiliary functions, interpolation estimates with auxiliary functionals.
Each of these two auxiliary results involves some algebraic subgroup of \(G\) which is responsible for a possible obstruction. In the present paper, the authors introduce a chain of algebraic subgroups of \(G\) which control the distribution of these points. This gives a unified treatment of the two auxiliary results and provides a bridge between multiplicity estimates and interpolation lemmas.

MSC:
11J81 Transcendence (general theory)
14L10 Group varieties
11J95 Results involving abelian varieties
14L40 Other algebraic groups (geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cascini, P; Nakamaye, M, Seshadri constants on smooth threefolds, Adv. Geom., 14, 59-79, (2014) · Zbl 1286.14009
[2] Ein, L; Lazarsfeld, R; Mustata, M; Nakamaye, M; Popa, M, Restricted volumes and base loci of linear series, Am. J. Math., 131, 607-652, (2009) · Zbl 1179.14006
[3] Fischler, S, Interpolation on algebraic groups, Compos. Math., 141, 907-925, (2005) · Zbl 1080.14054
[4] Fischler, S; Nakamaye, M, Seshadri constants and interpolation on commutative algebraic groups, Ann. de l’Inst. Fourier, 64, 1269-1289, (2014) · Zbl 1330.14076
[5] Masser, D.: Interpolation on group varieties. In: Bertrand, D., Waldschmidt, M. (eds.) Approximations diophantiennes et nombres transcendants (Luminy, 1982), Progress in Math., vol. 31, pp. 151-171. Birkhäuser, Boston (1983) · Zbl 1330.14076
[6] Masser, D; Wüstholz, G, Zero estimates on group varieties I, Invent. Math., 64, 489-516, (1981) · Zbl 0467.10025
[7] Nakamaye, M, Seshadri constants at very general points, Trans. Am. Math. Soc., 357, 3285-3297, (2005) · Zbl 1084.14008
[8] Nakamaye, M.: Multiplicity estimates, interpolation, and transcendence theory. In: Goldfeld, D., et al. (eds.) Number Theory, Analysis and Geometry: In Memory of Serge Lang, pp. 475-498. Springer, New York (2012) · Zbl 1268.11097
[9] Philippon, P.: Lemmes de zéros dans les groupes algébriques commutatifs. Bull. Soc. Math. Fr. 114, 355-383 (1986). [errata et addenda, id. 115, 397-398 (1987)] · Zbl 0617.14001
[10] Philippon, P, Nouveaux lemmes de zéros dans LES groupes algébriques commutatifs, Rocky Mt. J. Math., 26, 1069-1088, (1996) · Zbl 0893.11027
[11] Roy, D, Interpolation formulas and auxiliary functions, J. Number Theory, 94, 248-285, (2002) · Zbl 1010.11039
[12] Waldschmidt, M.: La transformation de Fourier-Borel : une dualité en transcendance. lecture given in Delphi on September 29th 1989, G.E.P.B.D. 1988-1989, Publ. Math. Univ. P. et M. Curie 90, no. 8, 12 pages. http://www.math.jussieu.fr/ miw
[13] Waldschmidt, M.: Nombres transcendants et groupes algébriques, Astérisque, vol. 69-70. Soc. Math. France (1979) · Zbl 0428.10017
[14] Waldschmidt, M.: Dépendance de logarithmes dans les groupes algébriques. In: Bertrand, D., Waldschmidt, M. (eds.) Approximations diophantiennes et nombres transcendants (Luminy, 1982), Progress in Math., vol. 31, pp. 289-328. Birkhäuser, Boston (1983) · Zbl 0467.10025
[15] Waldschmidt, M, Fonctions auxiliaires et fonctionnelles analytiques I, II, J. Anal. Math., 56, 231-279, (1991) · Zbl 0742.11035
[16] Waldschmidt, M.: Diophantine approximation on linear algebraic groups: transcendence properties of the exponential function in several variables. In: Grundlehren Math. Wiss., vol. 326. Springer, New York (2000) · Zbl 0944.11024
[17] Wüstholz, G, Multiplicity estimates on group varieties, Ann. Math., 129, 471-500, (1989) · Zbl 0675.10024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.